AI Article Synopsis

Article Abstract

In recent years, eucommia ulmoides gum (EUG), also known as gutta-percha, has been extensively researched. Molecular dynamic simulations and experiments were used together to look at how well gutta-percha and asphalt work together and how gutta-percha-modified asphalt works. To investigate the gutta-percha and asphalt blending systems, the molecular models of asphalt and various dosages of gutta-percha-modified asphalt were set up using Materials Studio (MS), and the solubility parameters, intermolecular interaction energy, diffusion coefficient, and mechanical properties (including elastic modulus, bulk modulus, and shear modulus) of each system were calculated using molecular dynamic simulations at various temperatures. The findings indicate that EUG and asphalt are compatible, and sulfurized eucommia ulmoides gum (SEUG) and asphalt are more compatible than EUG. However, SEUG-modified asphalt has better mechanical properties than EUG, and the best preparation conditions are 10 wt% doping and 1 h of 180 °C shearing. Primarily, physical modifications are required for gutta-percha-modified asphalt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456603PMC
http://dx.doi.org/10.3390/ma16165700DOI Listing

Publication Analysis

Top Keywords

molecular dynamic
12
eucommia ulmoides
12
gutta-percha-modified asphalt
12
asphalt
10
ulmoides gum
8
dynamic simulations
8
gutta-percha asphalt
8
mechanical properties
8
asphalt compatible
8
study molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!