Construction and agricultural waste recycling have gained more and more attention recently as renewable resources. Straw and construction waste, both of which are widespread in northern Fujian, were investigated in this research. The orthogonal test was used to investigate the effects of recycled aggregate, straw, and glazed hollow beads on the mechanical and thermal properties of recycled insulation concrete. The influence of different factors on the macroscopic characteristics of recycled insulation concrete was examined using scanning electron microscopy (SEM). The optimal mix proportion for recycled insulation concrete that satisfies mechanical performance standards and provides superior insulation performance was then determined using the total efficacy coefficient method. According to the research findings, the heat conductivity of recycled insulation concrete decreases as its dried density decreases. A 100% recycled coarse aggregate replacement rate, 1% straw content, and 10% glazed hollow beads replacement rate are the optimal mix ratios for recycled insulation concrete. With a compressive strength of 20.98 MPa, a splitting tensile strength of 2.01 MPa, a thermal conductivity of 0.3776 W/(m·K), and a dry density of 1778.66 kg/m, recycled insulation concrete has the optimal mix ratio. Recycled insulation concrete is a novel form of eco-friendly, energy-saving concrete that aims to achieve low-carbon energy savings and sustainable development by combining resource recycling with building energy savings to realize the recycling of solid waste resources, which has significant environmental, social, and economic benefits and broad market application potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456967 | PMC |
http://dx.doi.org/10.3390/ma16165688 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.
Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Polyurethanes are an important class of synthetic polymers, widely used in a variety of applications ranging from everyday items to advanced tools in societal infrastructure. Their inherent cross-linked structure imparts exceptional durability and flexibility, yet this also complicates their degradation and recycling. Here we report a heterogeneous catalytic process that combines methanolysis and hydrogenation with a CO/H reaction medium, effectively breaking down PU waste consisting of urethane and ester bonds into valuable intermediates like aromatic diamines and lactones.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFGels
December 2024
School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China.
In this study, a new environmentally friendly and efficient method for recycling and reusing waste polyurethane sheets is proposed. SiO aerogel was prepared using the sol-gel method, and mullite whiskers were introduced to enhance its toughness. The whisker-toughened aerogel was used in the degradation of waste polyurethane to produce modified recycled polyol, which was subsequently used to prepare recycled polyurethane foam insulation material.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!