Electromagnetic stirring (M-EMS) has been extensively applied in continuous casting production to reduce the quality defects of casting billets. To investigate the effect of continuous casting electromagnetic stirring on billet segregation, a 3D multi-physics coupling model was established to simulate the internal heat, momentum, and solute transfer behavior, to identify the effect of M-EMS on the carbon segregation of a continuous casting square billet of 200 mm × 200 mm. The results show that M-EMS can move the high-temperature zone upward, which is favorable for the rapid solidification of the billet, and can promote the rotational flow of the molten steel in the horizontal direction. When the electromagnetic stirring current is varied in the range of 0-500 A, the degree of carbon segregation first decreases and then increases, with the best control of segregation at 300 A. In the frequency range of 3-5 Hz, the degree of carbon segregation degree increases with frequency. Meanwhile, the simulation and experimental results show that 3 Hz + 300 A is the best electromagnetic stirring parameter for improving the carbon segregation of casting billets with a size of 200 mm × 200 mm. So, a reasonable choice of the M-EMS parameters is crucial for the quality of the billet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456495 | PMC |
http://dx.doi.org/10.3390/ma16165531 | DOI Listing |
Materials (Basel)
January 2025
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering and transportation, North China University of Water Resources and Electric Power, Zhengzhou, 450045, Henan, China.
In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFACS Omega
January 2025
Faculty of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi ave. 71/23, 050040 Almaty, Kazakhstan.
This study investigates the formation of carbon dioxide clathrate hydrates under conditions simulating interstellar environments, a process of significant astrophysical and industrial relevance. Clathrate hydrates, where gas molecules are trapped within water ice cages, play an essential role in both carbon sequestration strategies and understanding of the behavior of ices in space. We employed a combination of Fourier Transform Infrared (FTIR) spectroscopy, mass spectrometry, temperature-programmed desorption (TPD), and Density Functional Theory (DFT) calculations to explore thin films of HO:CO ice mixtures with varying CO concentrations (5-75%) prepared by vapor deposition at temperatures ranging between 11 and 180 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!