Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the ' and ' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the ' and ' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454184 | PMC |
http://dx.doi.org/10.3390/ijms241612865 | DOI Listing |
Geroscience
January 2025
Gerontopole, Clinical and Geroscience Research, Toulouse University Hospital, WHO Collaborating Center for Frailty, and Geriatric Training, Toulouse, France.
The aim of this study is to evaluate the association of systemic inflammation measured by plasma biomarkers with the change in cognitive function among participants from the Multidomain Alzheimer Preventive Trial (MAPT) exposed to the multidomain intervention (MI). Secondary analysis of the MAPT longitudinal data. MAPT is a randomized, placebo-controlled trial with 3 interventional groups (omega-3 only, MI only, omega-3 plus MI) and a control group.
View Article and Find Full Text PDFSci Rep
January 2025
INSERM, Bergonié Institute, BPH, U1219, CIC-P 1401, University of Bordeaux, Bordeaux, France.
In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.
Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Many bacterial toxins exert their cytotoxic effects by enzymatically inactivating one or more cytosolic targets in host cells. To reach their intracellular targets, these toxins possess functional domains or subdomains that interact with and exploit various host factors and biological processes. Despite great progress in identifying many of the key host factors involved in the uptake of toxins, significant knowledge gaps remain as to how partially characterized and newly discovered microbial toxins exploit host factors or processes to intoxicate target cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!