The emergence and the high transmissibility of the XBB.1.5 and XBB.1.16 subvariants of the SARS-CoV-2 omicron has reignited concerns over the potential impact on vaccine efficacy for these and future variants. We investigated the roles of the XBB.1.5 and XBB.1.16 mutations on the structure of the spike protein's receptor-binding domain (RBD) and its interactions with the host cell receptor ACE2. To bind to ACE2, the RBD must transition from the closed-form to the open-form configuration. We found that the XBB variants have less stable closed-form structures that may make the transition to the open-form easier. We found that the mutations enhance the RBD-ACE2 interactions in XBB.1.16 compared to XBB.1.5. We observed significant structural changes in the loop and motif regions of the RBD, altering well-known antibody-binding sites and potentially rendering primary RBD-specific antibodies ineffective. Our findings elucidate how subtle structural changes and interactions contribute to the subvariants' fitness over their predecessors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454900 | PMC |
http://dx.doi.org/10.3390/ijms241612586 | DOI Listing |
J Med Virol
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity.
View Article and Find Full Text PDFNiger J Clin Pract
October 2023
DESAM Research Institute, Near East University, Nicosia, Cyprus.
Background: The XBB.1.5 sub-variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron now continues to spread rapidly due to the increased transmission rate as a result of increased affinity of the virus binding over the ACE-2 receptor - a gained property due to the mutation that occurred in spike protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!