Increasing interest has been shown in the subject of non-additive entropic forms during recent years, which has essentially been due to their potential applications in the area of complex systems. Based on the fact that a given entropic form should depend only on a set of probabilities, its time evolution is directly related to the evolution of these probabilities. In the present work, we discuss some basic aspects related to non-additive entropies considering their time evolution in the cases of continuous and discrete probabilities, for which nonlinear forms of Fokker-Planck and master equations are considered, respectively. For continuous probabilities, we discuss an H-theorem, which is proven by connecting functionals that appear in a nonlinear Fokker-Planck equation with a general entropic form. This theorem ensures that the stationary-state solution of the Fokker-Planck equation coincides with the equilibrium solution that emerges from the extremization of the entropic form. At equilibrium, we show that a Carnot cycle holds for a general entropic form under standard thermodynamic requirements. In the case of discrete probabilities, we also prove an H-theorem considering the time evolution of probabilities described by a master equation. The stationary-state solution that comes from the master equation is shown to coincide with the equilibrium solution that emerges from the extremization of the entropic form. For this case, we also discuss how the third law of thermodynamics applies to equilibrium non-additive entropic forms in general. The physical consequences related to the fact that the equilibrium-state distributions, which are obtained from the corresponding evolution equations (for both continuous and discrete probabilities), coincide with those obtained from the extremization of the entropic form, the restrictions for the validity of a Carnot cycle, and an appropriate formulation of the third law of thermodynamics for general entropic forms are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453305 | PMC |
http://dx.doi.org/10.3390/e25081132 | DOI Listing |
Chemphyschem
January 2025
Dalhousie University, Department of Chemistry, 6274 Coburg Road, P.O. box 15000, B3H4R2, Halifax, CANADA.
High entropy alloy (HEA) nanoparticles (NPs) have attracted much attention recently due to their unprecedented chemical properties. As such, HEA NPs have been used as materials with superior activity toward electrocatalytic applications. Specifically, solid solutions that form randomly mixed single-phased structures have received the most focus in the early stages of HEA NP development for their entropic-driven design and multifunctionality.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan.
In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann-Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Health Science, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia.
Proteins
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.
View Article and Find Full Text PDFNat Commun
January 2025
Département de Physique Appliquée, Université de Genève, Genève, Switzerland.
Non-signalling conditions encode minimal requirements that any (quantum) systems must satisfy in order to be consistent with special relativity. Recent works have argued that in scenarios involving more than two parties, correlations compatible with relativistic causality do not have to satisfy all possible non-signalling conditions but only a subset of them. Here we show that correlations satisfying only this subset of constraints have to satisfy highly non-local monogamy relations between the effects of space-like separated random variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!