A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Saponin on Physicochemical Properties of Oil Bodies Recovered from Peony () Seed Aqueous Extract at Different pH. | LitMetric

AI Article Synopsis

  • Peony seeds are gaining interest for their oil content rich in α-linolenic acid, with oil bodies (OBs) showing potential for food industry applications.
  • The study examined how different extraction pH levels (4.0 to 7.0) and varying amounts of saponin (QS) affect the properties of peony oil body (POB) emulsions, finding changes in protein content, particle size, and stability.
  • Results indicated that higher extraction pH improved oxidative and storage stability while 0.1% QS notably enhanced emulsion performance, providing insights for optimal POB extraction and stability improvement.

Article Abstract

Peony seeds, an important oil resource, have been attracting much attention because of α-linolenic acid. Oil bodies (OBs), naturally pre-emulsified oils, have great potential applications in the food industry. This study investigated the effects of extraction pH and saponin (QS) on the physicochemical properties of peony oil body (POB) emulsions. POBs were extracted from raw peony milk at pH 4.0, 5.0, 6.0, and 7.0 (named pH 4.0-, 5.0-, 6.0-, and 7.0-POBs). All POBs contained extrinsic proteins and oleosins. The extrinsic proteins of pH 4.0- and pH 5.0-POB were 23 kDa and 38 kDa glycoproteins, the unknown proteins were 48 kDa and 60 kDa, while the 48 kDa and 38 kDa proteins were completely removed under the extraction condition of pH 6.0 and 7.0. The percentage of extrinsic proteins gradually decreased from 78.4% at pH 4.0-POB to 33.88% at pH 7.0-POB, while oleosin contents increased. The particle size and zeta potential of the POB emulsions decreased, whereas the oxidative stability, storage stability, and pI increased with the increasing extraction pH. QS (0.05~0.3%) increased the negative charges of all the POB emulsions, and 0.1% QS significantly improved the dispersion, storage, and the oxidative stability of the POB emulsions. This study provides guidance for selecting the proper conditions for the aqueous extraction of POBs and improving the stability of OB emulsions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453849PMC
http://dx.doi.org/10.3390/foods12163017DOI Listing

Publication Analysis

Top Keywords

pob emulsions
16
kda kda
16
extrinsic proteins
12
saponin physicochemical
8
physicochemical properties
8
oil bodies
8
oxidative stability
8
kda
6
emulsions
5
proteins
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!