EEG-based emotion recognition has numerous real-world applications in fields such as affective computing, human-computer interaction, and mental health monitoring. This offers the potential for developing IOT-based, emotion-aware systems and personalized interventions using real-time EEG data. This study focused on unique EEG channel selection and feature selection methods to remove unnecessary data from high-quality features. This helped improve the overall efficiency of a deep learning model in terms of memory, time, and accuracy. Moreover, this work utilized a lightweight deep learning method, specifically one-dimensional convolutional neural networks (1D-CNN), to analyze EEG signals and classify emotional states. By capturing intricate patterns and relationships within the data, the 1D-CNN model accurately distinguished between emotional states (HV/LV and HA/LA). Moreover, an efficient method for data augmentation was used to increase the sample size and observe the performance deep learning model using additional data. The study conducted EEG-based emotion recognition tests on SEED, DEAP, and MAHNOB-HCI datasets. Consequently, this approach achieved mean accuracies of 97.6, 95.3, and 89.0 on MAHNOB-HCI, SEED, and DEAP datasets, respectively. The results have demonstrated significant potential for the implementation of a cost-effective IoT device to collect EEG signals, thereby enhancing the feasibility and applicability of the data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453543 | PMC |
http://dx.doi.org/10.3390/diagnostics13162624 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!