(1) Background: This study aims to develop a deep learning model based on a 3D Deeplab V3+ network to automatically segment multiple structures from magnetic resonance (MR) images at the L4/5 level. (2) Methods: After data preprocessing, the modified 3D Deeplab V3+ network of the deep learning model was used for the automatic segmentation of multiple structures from MR images at the L4/5 level. We performed five-fold cross-validation to evaluate the performance of the deep learning model. Subsequently, the Dice Similarity Coefficient (DSC), precision, and recall were also used to assess the deep learning model's performance. Pearson's correlation coefficient analysis and the Wilcoxon signed-rank test were employed to compare the morphometric measurements of 3D reconstruction models generated by manual and automatic segmentation. (3) Results: The deep learning model obtained an overall average DSC of 0.886, an average precision of 0.899, and an average recall of 0.881 on the test sets. Furthermore, all morphometry-related measurements of 3D reconstruction models revealed no significant difference between ground truth and automatic segmentation. Strong linear relationships and correlations were also obtained in the morphometry-related measurements of 3D reconstruction models between ground truth and automated segmentation. (4) Conclusions: We found it feasible to perform automated segmentation of multiple structures from MR images, which would facilitate lumbar surgical evaluation by establishing 3D reconstruction models at the L4/5 level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451852 | PMC |
http://dx.doi.org/10.3390/bioengineering10080963 | DOI Listing |
Int J Comput Assist Radiol Surg
January 2025
Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.
Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.
Neurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Anesthesiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan.
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Computer Science Department, University of Geneva, Geneva, Switzerland.
Accurate wound segmentation is crucial for the precise diagnosis and treatment of various skin conditions through image analysis. In this paper, we introduce a novel dual attention U-Net model designed for precise wound segmentation. Our proposed architecture integrates two widely used deep learning models, VGG16 and U-Net, incorporating dual attention mechanisms to focus on relevant regions within the wound area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!