The implementation of bioreactor systems for the production of bacterial inoculants as biofertilizers has become very important in recent decades. However, it is essential to know the bacterial growth optimal conditions to optimize the production and efficiency of bioinoculants. The aim of this work was to identify the best nutriment and mixing conditions to improve the specific cell growth rates (µ) of two PGPB (plant growth-promoting bacteria) rhizobial strains at the bioreactor level. For this purpose, the strains ITTG-R7 and ITTG-S70 were previously reactivated in a PY-Ca (peptone casein, yeast extract, and calcium) culture medium. Afterward, a master cell bank (MCB) was made in order to maintain the viability and quality of the strains. The kinetic characterization of each bacterial strain was carried out in s shaken flask. Then, the effect of the carbon and nitrogen sources and mechanical agitation was evaluated through a factorial design and response surface methodology (RSM) for cell growth optimization, where µ was considered a response variable. The efficiency of biomass production was determined in a homemade bioreactor, taking into account the optimal conditions obtained during the experiment conducted at the shaken flask stage. In order to evaluate the biological quality of the product obtained in the bioreactor, the bacterial strains were inoculated in common bean ( var. Jamapa) plants under bioclimatic chamber conditions. The maximum cell growth rate in both PGPB strains was obtained using a Y-Ca (yeast extract and calcium) medium and stirred at 200 and 300 rpm. Under these growth conditions, the strains exhibited a high nitrogen-fixing capacity, which had a significant ( < 0.05) impact on the growth of the test plants. The bioreactor system was found to be an efficient alternative for the large-scale production of PGPB rhizobial bacteria, which are intended for use as biofertilizers in agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451550PMC
http://dx.doi.org/10.3390/bioengineering10080960DOI Listing

Publication Analysis

Top Keywords

cell growth
12
pgpb strains
8
homemade bioreactor
8
optimal conditions
8
yeast extract
8
extract calcium
8
shaken flask
8
strains
7
growth
7
bioreactor
6

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!