A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Non-Contact Detection and Identification Method for the Post-Disaster Compression State of Injured Individuals Using UWB Bio-Radar. | LitMetric

Building collapse leads to mechanical injury, which is the main cause of injury and death, with crush syndrome as its most common complication. During the post-disaster search and rescue phase, if rescue personnel hastily remove heavy objects covering the bodies of injured individuals and fail to provide targeted medical care, ischemia-reperfusion injury may be triggered, leading to rhabdomyolysis. This may result in disseminated intravascular coagulation or acute respiratory distress syndrome, further leading to multiple organ failure, which ultimately leads to shock and death. Using bio-radar to detect vital signs and identify compression states can effectively reduce casualties during the search for missing persons behind obstacles. A time-domain ultra-wideband (UWB) bio-radar was applied for the non-contact detection of human vital sign signals behind obstacles. An echo denoising algorithm based on PSO-VMD and permutation entropy was proposed to suppress environmental noise, along with a wounded compression state recognition network based on radar-life signals. Based on training and testing using over 3000 data sets from 10 subjects in different compression states, the proposed multiscale convolutional network achieved a 92.63% identification accuracy. This outperformed SVM and 1D-CNN models by 5.30% and 6.12%, respectively, improving the casualty rescue success and post-disaster precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451469PMC
http://dx.doi.org/10.3390/bioengineering10080905DOI Listing

Publication Analysis

Top Keywords

non-contact detection
8
compression state
8
injured individuals
8
uwb bio-radar
8
compression states
8
novel non-contact
4
detection identification
4
identification method
4
method post-disaster
4
compression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!