Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Building collapse leads to mechanical injury, which is the main cause of injury and death, with crush syndrome as its most common complication. During the post-disaster search and rescue phase, if rescue personnel hastily remove heavy objects covering the bodies of injured individuals and fail to provide targeted medical care, ischemia-reperfusion injury may be triggered, leading to rhabdomyolysis. This may result in disseminated intravascular coagulation or acute respiratory distress syndrome, further leading to multiple organ failure, which ultimately leads to shock and death. Using bio-radar to detect vital signs and identify compression states can effectively reduce casualties during the search for missing persons behind obstacles. A time-domain ultra-wideband (UWB) bio-radar was applied for the non-contact detection of human vital sign signals behind obstacles. An echo denoising algorithm based on PSO-VMD and permutation entropy was proposed to suppress environmental noise, along with a wounded compression state recognition network based on radar-life signals. Based on training and testing using over 3000 data sets from 10 subjects in different compression states, the proposed multiscale convolutional network achieved a 92.63% identification accuracy. This outperformed SVM and 1D-CNN models by 5.30% and 6.12%, respectively, improving the casualty rescue success and post-disaster precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451469 | PMC |
http://dx.doi.org/10.3390/bioengineering10080905 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!