In deep brain stimulation (DBS) studies in patients with Parkinson's disease, the Lead-DBS toolbox allows the reconstruction of the location of β-oscillations in the subthalamic nucleus (STN) using Vercise Cartesia directional electrodes (Boston Scientific). The objective was to compare these probabilistic locations with those of intraoperative monopolar β-oscillations computed from local field potentials (0.5-3 kHz) recorded by using shielded single wires and an extracranial shielded reference electrode. For each electrode contact, power spectral densities of the β-band (13-31 Hz) were compared with those of all eight electrode contacts on the directional electrodes. The DBS Intrinsic Template AtLas (DISTAL), electrophysiological, and DBS target atlases of the Lead-DBS toolbox were applied to the reconstructed electrodes from preoperative MRI and postoperative CT. Thirty-six electrodes (20 patients: 7 females, 13 males; both STN electrodes for 16 of 20 patients; one single STN electrode for 4 of 20 patients) were analyzed. Stimulation sites both dorsal and/or lateral to the sensorimotor STN were the most efficient. In 33 out of 36 electrodes, at least one contact was measured with stronger β-oscillations, including 23 electrodes running through or touching the ventral subpart of the β-oscillations' probabilistic volume, while 10 did not touch it but were adjacent to this volume; in 3 out of 36 electrodes, no contact was found with β-oscillations and all 3 were distant from this volume. Monopolar local field potentials confirmed the ventral subpart of the probabilistic β-oscillations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451384PMC
http://dx.doi.org/10.3390/bioengineering10080898DOI Listing

Publication Analysis

Top Keywords

directional electrodes
12
electrodes
9
lead-dbs toolbox
8
local field
8
field potentials
8
electrodes patients
8
electrodes contact
8
ventral subpart
8
β-oscillations
5
validation lead-dbs
4

Similar Publications

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Electrochemistry and Gold Catalysis: Unusual Allies in Redox Mediated Organic Reactions.

Chem Asian J

January 2025

Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto-SP, 14040-903, Brazil.

Devising advanced protocols to avoid harsh oxidants is of paramount interest in gold catalyzed redox reactions. To address this issue, electrochemical oxidation of precatalytic Au complexes to catalytically active Au in situ species has started to emerge as a potential alternative. Such endeavours not only unlocked the possibility of direct anodic oxidation of Au to Au, but also enables stepwise oxidation of Au to Au to Au through the mediation of electro-generated organic radicals.

View Article and Find Full Text PDF

Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.

View Article and Find Full Text PDF

Effect of defects on ballistic transport in a bilayer SnS-based junction with Co intercalated electrodes.

Phys Chem Chem Phys

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.

View Article and Find Full Text PDF

Speech production engages a distributed network of cortical and subcortical brain regions. The supplementary motor area (SMA) has long been thought to be a key hub in coordinating across these regions to initiate voluntary movements, including speech. We analyzed direct intracranial recordings from 115 patients with epilepsy as they articulated a single word in a subset of trials from a picture-naming task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!