https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37627270&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 376272702023082820230916
2218-273X1382023Aug01BiomoleculesBiomoleculesDeleterious Interaction between the Neurosteroid (3α,5α)3-Hydroxypregnan-20-One (3α,5α-THP) and the Mu-Opioid System Activation during Forced Swim Stress in Rats.120510.3390/biom13081205The neurosteroid 3α,5α-THP is a potent GABAA receptor-positive modulator and its regulatory action on the HPA axis stress response has been reported in numerous preclinical and clinical studies. We previously demonstrated that 3α,5α-THP down-regulation of HPA axis activity during stress is sex-, brain region- and stressor-dependent. In this study, we observed a deleterious submersion behavior in response to 3α,5α-THP (15 mg/kg) during forced swim stress (FSS) that led us to investigate how 3α,5α-THP might affect behavioral coping strategies engaged in by the animal. Given the well-established involvement of the opioid system in HPA axis activation and its interaction with GABAergic neurosteroids, we explored the synergic effects of 3α,5α-THP/opiate system activation in this behavior. Serum β-endorphin (β-EP) was elevated by FSS and enhanced by 3α,5α-THP + FSS. Hypothalamic Mu-opiate receptors (MOP) were increased in female rats by 3α,5α-THP + FSS. Pretreatment with the MOP antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2 mg/kg, IP) reversed submersion behavior in males. Moreover, in both males and females, CTAP pretreatment decreased immobility episodes while increasing immobility duration but did not alter swimming duration. This interaction between 3α,5α-THP and the opioid system in the context of FSS might be important in the development of treatment for neuropsychiatric disorders involving HPA axis activation.BoeroGiorgiaG0000-0001-7328-3943Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.McFarlandMinna HMHBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.TylerRyan EREBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.O'BuckleyTodd KTK0000-0001-8723-734XBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.ChérySamantha LSLBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.RobinsonDonita LDL0000-0001-7540-3363Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.BesheerJoyceJBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.MorrowA LeslieALBowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Bldg., CB 7178, Chapel Hill, NC 27599, USA.Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.engF31 DA054781DANIDA NIH HHSUnited StatesR01 AA024095AANIAAA NIH HHSUnited StatesJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, N.I.H., Extramural20230801
SwitzerlandBiomolecules1015964142218-273X0Analgesics, OpioidBXO86P3XXWPregnanolone0Neurosteroids0Receptors, GABA-AIMFemaleMaleAnimalsRatsAnalgesics, OpioidPregnanolonepharmacologyHypothalamo-Hypophyseal SystemNeurosteroidsPituitary-Adrenal SystemSwimmingReceptors, GABA-A3α,5α-THPCTAPallopregnanolonebehaviorbrexanoloneforced swim stressmu-opioid receptorneurosteroidsopioid systemstressThe authors declare no conflict of interest.
202361620237282023728202382871620238261042202382615202381epublish37627270PMC1045286410.3390/biom13081205biom13081205Beall D. The isolation of progesterone and 3:20-allopregnanolone from ox adrenals. Biochem. J. 1938;32:1957–1960. doi: 10.1042/bj0321957.10.1042/bj0321957PMC126428116746834Meltzer-Brody S., Colquhoun H., Riesenberg R., Epperson C.N., Deligiannidis K.M., Rubinow D.R., Li H., Sankoh A.J., Clemson C., Schacterle A., et al. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet. 2018;392:1058–1070. doi: 10.1016/S0140-6736(18)31551-4.10.1016/S0140-6736(18)31551-430177236American Psychiatric Association . DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: Dsm-5. 5th ed. American Psychiatric Association; Washington, DC, USA: 2013.Boero G., Porcu P., Morrow A.L. Pleiotropic actions of allopregnanolone underlie therapeutic benefits in stress-related disease. Neurobiol. Stress. 2020;12:100203. doi: 10.1016/j.ynstr.2019.100203.10.1016/j.ynstr.2019.100203PMC692011131879693Owens M.J., Ritchie J.C., Nemeroff C.B. 5a-Pregnane-3a,21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: Comparison with alprazolam. Brain Res. 1992;573:353–355. doi: 10.1016/0006-8993(92)90788-B.10.1016/0006-8993(92)90788-B1504771Patchev V., B.V.Sc A.H., Holsboer F., Almeida O. The Neurosteroid Tetrahydroprogesterone Attenuates the Endocrine Response to Stress and Exerts Glucocorticoid-like Effects on Vasopressin Gene Transcription in the Rat Hypothalamus. Neuropsychopharmacology. 1996;15:533–540. doi: 10.1016/S0893-133X(96)00096-6.10.1016/S0893-133X(96)00096-68946427Patchev V., Shoaib M., Holsboer F., Almeida O. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience. 1994;62:265–271. doi: 10.1016/0306-4522(94)90330-1.10.1016/0306-4522(94)90330-17816204Balan I., Aurelian L., Schleicher R., Boero G., O’buckley T., Morrow A.L. Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl. Psychiatry. 2021;11:145. doi: 10.1038/s41398-021-01266-1.10.1038/s41398-021-01266-1PMC790937933637705Balan I., Beattie M.C., O’buckley T.K., Aurelian L., Morrow A.L. Endogenous Neurosteroid (3α,5α)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 2019;9:1220. doi: 10.1038/s41598-018-37409-6.10.1038/s41598-018-37409-6PMC636208430718548Balan I., Aurelian L., Williams K.S., Campbell B., Meeker R.B., Morrow A.L. Inhibition of human macrophage activation via pregnane neurosteroid interactions with toll-like receptors: Sex differences and structural requirements. Front. Immunol. 2022;13:940095. doi: 10.3389/fimmu.2022.940095.10.3389/fimmu.2022.940095PMC937380235967446Balan I., Patterson R., Boero G., Krohn H., O’Buckley T.K., Meltzer-Brody S., Morrow A.L. Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. Ebiomedicine. 2023;89:104473. doi: 10.1016/j.ebiom.2023.104473.10.1016/j.ebiom.2023.104473PMC998443336801618Boero G., Tyler R.E., Todd C.A., O’Buckley T.K., Balan I., Besheer J., Morrow A.L. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology. 2021;186:108463. doi: 10.1016/j.neuropharm.2021.108463.10.1016/j.neuropharm.2021.108463PMC801064633460689Boero G., Tyler R.E., O’buckley T.K., Balan I., Besheer J., Morrow A.L. (3α,5α)3-Hydroxypregnan-20-one (3α,5α-THP) Regulation of the HPA Axis in the Context of Different Stressors and Sex. Biomolecules. 2022;12:1134. doi: 10.3390/biom12081134.10.3390/biom12081134PMC940619836009028Crawley J.N., Glowa J.R., Majewska M.D., Paul S.M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 1986;398:382–385. doi: 10.1016/0006-8993(86)91500-3.10.1016/0006-8993(86)91500-32879610Devaud L.L., Morrow A.L. Interactions between neuroactive steroids and ethanol at gabaa receptors: Effects of ethanol withdrawal. In: Hunt W.A., Zakhari S., editors. Stress, Gender and Alcohol-Seeking Behavior, Niaaa Research Monograph No. 29. U.S. Gov. Printing Office; Washington, DC, USA: 1995. pp. 219–240.Mendelson W.B., Martin J.V., Perlis M., Wagner R., Majewska M.D., Paul S.M. Sleep induction by an adrenal steroid in the rat. Psychopharmacology. 1987;93:226–229. doi: 10.1007/BF00179939.10.1007/BF001799393122256Reddy D., Zeng Y.-C. Differential anesthetic activity of ketamine and the GABAergic neurosteroid allopregnanolone in mice lacking progesterone receptor A and B subtypes. Methods Find. Exp. Clin. Pharmacol. 2007;29:659–664. doi: 10.1358/mf.2007.29.10.1147766.10.1358/mf.2007.29.10.1147766PMC256133418200328Drolet G., Dumont C., Gosselin I., Kinkead R., Laforest S., Trottier J.-F. Role of endogenous opioid system in the regulation of the stress response. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2001;25:729–741. doi: 10.1016/S0278-5846(01)00161-0.10.1016/S0278-5846(01)00161-011383975Constantopoulos A., Papadaki-Papandreou U., Papaconstantinou E. Increased beta-endorphin but not Leu-enkephalin in plasma due to preoperative stress. Cell. Mol. Life Sci. 1995;51:16–18.7843324Eberwine J.H., Roberts J.L. Glucocorticoid regulation of pro-opiomelanocortin gene transcription in the rat pituitary. J. Biol. Chem. 1984;259:2166–2170. doi: 10.1016/S0021-9258(17)43332-1.10.1016/S0021-9258(17)43332-16546571Hellbach S., Gärtner P., Deicke J., Fischer D., Hassan A.H.S., Almeida O.F.X. Inherent glucocorticoid response potential of isolated hypothalamic neuroendocrine neurons. FASEB J. 1998;12:199–207. doi: 10.1096/fasebj.12.2.199.10.1096/fasebj.12.2.1999472985Van Bockstaele E., Valentino R.J. Opposing regulation of the locus coeruleus by corticotropin-releasing factor and opioids. Potential for reciprocal interactions between stress and opioid sensitivity. Psychopharmacology. 2001;158:331–342. doi: 10.1007/s002130000673.10.1007/s00213000067311797054Shields G.S., Sazma M.A., Yonelinas A.P. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci. Biobehav. Rev. 2016;68:651–668. doi: 10.1016/j.neubiorev.2016.06.038.10.1016/j.neubiorev.2016.06.038PMC500376727371161Bandura A., Cioffi D., Taylor C.B., Brouillard M.E. Perceived self-efficacy in coping with cognitive stressors and opioid activation. J. Pers. Soc. Psychol. 1988;55:479–488. doi: 10.1037/0022-3514.55.3.479.10.1037/0022-3514.55.3.4793171918Laredo S.A., Steinman M.Q., Robles C.F., Ferrer E., Ragen B.J., Trainor B.C. Effects of defeat stress on behavioral flexibility in males and females: Modulation by the mu-opioid receptor. Eur. J. Neurosci. 2015;41:434–441. doi: 10.1111/ejn.12824.10.1111/ejn.12824PMC433122325615538Lim A.T., Funder J.W. Stress-Induced Changes in Plasma, Pituitary and Hypothalamic Immunoreactive β-Endorphin: Effects of Diurnal Variation, Adrenalectomy, Corticosteroids, and Opiate Agonists and Antagonists. Neuroendocrinology. 1983;36:225–234. doi: 10.1159/000123460.10.1159/0001234606300719Brunton P.J., McKay A.J., Ochędalski T., Piastowska A., Rębas E., Lachowicz A., Russell J.A. Central Opioid Inhibition of Neuroendocrine Stress Responses in Pregnancy in the Rat Is Induced by the Neurosteroid Allopregnanolone. J. Neurosci. 2009;29:6449–6460. doi: 10.1523/JNEUROSCI.0708-09.2009.10.1523/JNEUROSCI.0708-09.2009PMC666589419458216Nequin L.G., Alvarez J., Schwartz N.B. Measurement of Serum Steroid and Gonadotropin Levels and Uterine and Ovarian Variables throughout 4 Day and 5 Day Estrous Cycles in the Rat1. Biol. Reprod. 1979;20:659–670. doi: 10.1095/biolreprod20.3.659.10.1095/biolreprod20.3.659572241Freeman M.E. Neuroendocrine control of the ovarian cycle of the rat. In: Neill J.D., editor. Knobil and Neill’s Physiology of Reproduction. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2006. pp. 2327–2388.Bartlett M.J., So L.Y., Szabò L., Skinner D.P., Parent K.L., Heien M.L., Vanderah T.W., Polt R., Sherman S.J., Falk T. Highly-selective µ-opioid receptor antagonism does not block L-DOPA-induced dyskinesia in a rodent model. BMC Res. Notes. 2020;13:149. doi: 10.1186/s13104-020-04994-7.10.1186/s13104-020-04994-7PMC706673932164786Chen L., Faas G.C., Ferando I., Mody I. Novel insights into the behavioral analysis of mice subjected to the forced-swim test. Transl. Psychiatry. 2015;5:e551. doi: 10.1038/tp.2015.44.10.1038/tp.2015.44PMC446260725871976Facchinetti F., Petraglia F., Genazzani A.R. Localization and Expression of the Three Opioid Systems. Semin. Reprod. Med. 1987;5:103–113. doi: 10.1055/s-2007-1021858.10.1055/s-2007-1021858Khisti R.T., Chopde C.T., Jain S.P. Antidepressant-like effect of the neurosteroid 3α-hydroxy-5α-pregnan-20-one in mice forced swim test. Pharmacol. Biochem. Behav. 2000;67:137–143. doi: 10.1016/S0091-3057(00)00300-2.10.1016/S0091-3057(00)00300-211113493Commons K.G., Cholanians A.B., Babb J.A., Ehlinger D.G. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem. Neurosci. 2017;8:955–960. doi: 10.1021/acschemneuro.7b00042.10.1021/acschemneuro.7b00042PMC551860028287253Dunn A.J., Swiergiel A.H., Palamarchouk V. Brain Circuits Involved in Corticotropin-Releasing Factor-Norepinephrine Interactions during Stress. Ann. N. Y. Acad. Sci. 2004;1018:25–34. doi: 10.1196/annals.1296.003.10.1196/annals.1296.00315240349Apkarian A.V., Bushnell M.C., Treede R.-D., Zubieta J.-K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain. 2005;9:463. doi: 10.1016/j.ejpain.2004.11.001.10.1016/j.ejpain.2004.11.00115979027Su T.-P., London E.D., Jaffe J.H. Steroid Binding at σ Receptors Suggests a Link Between Endocrine, Nervous, and Immune Systems. Science. 1988;240:219–221. doi: 10.1126/science.2832949.10.1126/science.28329492832949Maurice T., Phan V.-L., Urani A., Kamei H., Noda Y., Nabeshima T. Neuroactive Neurosteroids as Endogenous Effectors for the Sigma1 (.SIGMA.1) Receptor. Pharmacological Evidence and Therapeutic Opportunities. Jpn. J. Pharmacol. 1999;81:125–155. doi: 10.1016/S0021-5198(19)30781-4.10.1016/S0021-5198(19)30781-410591471Monnet F.P., Mahé V., Robel P., Baulieu E.E. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc. Natl. Acad. Sci. USA. 1995;92:3774–3778. doi: 10.1073/pnas.92.9.3774.10.1073/pnas.92.9.3774PMC420447731982Urani A., Privat A., Maurice T. The modulation by neurosteroids of the scopolamine-induced learning impairment in mice involves an interaction with sigma1 (σ1) receptors. Brain Res. 1998;799:64–77. doi: 10.1016/S0006-8993(98)00469-7.10.1016/S0006-8993(98)00469-79666079Dawson-Basoa M.E., Gintzler A.R. Estrogen and progesterone activate spinal kappa-opiate receptor analgesic mechanisms. Pain. 1996;64:608–615. doi: 10.1016/0304-3959(96)87175-2.10.1016/0304-3959(96)87175-28783328Piva F., Limonta P., Dondi D., Pimpinelli F., Martini L., Maggi R. Effects of steroids on the brain opioid system. J. Steroid Biochem. Mol. Biol. 1995;53:343–348. doi: 10.1016/0960-0760(95)00072-8.10.1016/0960-0760(95)00072-87626478Dennerstein L., Morse C., Burrows G., Oats J., Brown J., Smith M. Menstrual migraine: A double-blind trial of percutaneous estradiol. Gynecol. Endocrinol. 1988;2:113–120. doi: 10.3109/09513598809023619.10.3109/095135988090236193055819Lucchesi A., Stomati M., Catarsi S., Genazzani A.D., Criscuolo M., Petraglia F. Effects of sex steroid hormones on the neuroendocrine system. Eur. J. Contracept. Reprod. Health Care. 1997;2:63–69. doi: 10.1080/13625189709049935.10.1080/136251897090499359678110Genazzani A.R., Petraglia F., Facchinetti F., Facchini V., Volpe A., Alessandrini G. Increase of proopiomelanocortin-related peptides during subjective menopausal flushes. Am. J. Obstet. Gynecol. 1984;149:775–779. doi: 10.1016/0002-9378(84)90121-2.10.1016/0002-9378(84)90121-26087664Pluchino N., Luisi M., Lenzi E., Centofanti M., Begliuomini S., Freschi L., Ninni F., Genazzani A. Progesterone and progestins: Effects on brain, allopregnanolone and β-endorphin. J. Steroid Biochem. Mol. Biol. 2006;102:205–213. doi: 10.1016/j.jsbmb.2006.09.023.10.1016/j.jsbmb.2006.09.02317052903Baldo B.A. Prefrontal Cortical Opioids and Dysregulated Motivation: A Network Hypothesis. Trends Neurosci. 2016;39:366–377. doi: 10.1016/j.tins.2016.03.004.10.1016/j.tins.2016.03.004PMC581838527233653Regier P.S., Claxton A.B., Zlebnik N.E., Carroll M.E. Cocaine-, caffeine-, and stress-evoked cocaine reinstatement in high vs. low impulsive rats: Treatment with allopregnanolone. Drug Alcohol Depend. 2014;143:58–64. doi: 10.1016/j.drugalcdep.2014.07.001.10.1016/j.drugalcdep.2014.07.001PMC417235325073834Schmoutz C.D., Guerin G.F., Runyon S.P., Dhungana S., Goeders N.E. A therapeutic combination of metyrapone and oxazepam increases brain levels of GABA-active neurosteroids and decreases cocaine self-administration in male rats. Behav. Brain Res. 2015;291:108–111. doi: 10.1016/j.bbr.2015.05.019.10.1016/j.bbr.2015.05.01926003946Anker J.J., Holtz N.A., Zlebnik N., Carroll M.E. Effects of allopregnanolone on the reinstatement of cocaine-seeking behavior in male and female rats. Psychopharmacology. 2009;203:63–72. doi: 10.1007/s00213-008-1371-9.10.1007/s00213-008-1371-918998113Anker J.J., Zlebnik N.E., Carroll M.E. Differential effects of allopregnanolone on the escalation of cocaine self-administration and sucrose intake in female rats. Psychopharmacology. 2010;212:419–429. doi: 10.1007/s00213-010-1968-7.10.1007/s00213-010-1968-7PMC377351420689941Morrow A.L., Boero G., Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol. Clin. Exp. Res. 2020;44:320–339. doi: 10.1111/acer.14253.10.1111/acer.14253PMC701855531782169Besheer J., Lindsay T.G., O’buckley T.K., Hodge C.W., Morrow A.L. Pregnenolone and Ganaxolone Reduce Operant Ethanol Self-Administration in Alcohol-Preferring P Rats. Alcohol. Clin. Exp. Res. 2010;34:2044–2052. doi: 10.1111/j.1530-0277.2010.01300.x.10.1111/j.1530-0277.2010.01300.xPMC298898420946297Ornelas L.C., Boero G., Van Voorhies K., O’Buckley T.K., Besheer J., Morrow A.L. Pharmacological administration of 3α,5α-THP into the nucleus accumbens core increases 3α,5α-THP expression and reduces alcohol self-administration. Alcohol. Clin. Exp. Res. 2023;47:459–469. doi: 10.1111/acer.15008.10.1111/acer.15008PMC1023412836587947Milivojevic V., Charron L., Fogelman N., Hermes G., Sinha R. Pregnenolone Reduces Stress-Induced Craving, Anxiety, and Autonomic Arousal in Individuals with Cocaine Use Disorder. Biomolecules. 2022;12:1593. doi: 10.3390/biom12111593.10.3390/biom12111593PMC968789336358943Milivojevic V., Sullivan L., Tiber J., Fogelman N., Simpson C., Hermes G., Sinha R. Pregnenolone effects on provoked alcohol craving, anxiety, HPA axis, and autonomic arousal in individuals with alcohol use disorder. Psychopharmacology. 2022;240:101–114. doi: 10.1007/s00213-022-06278-3.10.1007/s00213-022-06278-3PMC1063088936445398