AI Article Synopsis

Article Abstract

Boron neutron capture therapy (BNCT) is a promising cancer treatment modality that combines targeted boron agents and neutron irradiation to selectively destroy tumor cells. In mainland China, the clinical implementation of BNCT has made certain progress, primarily driven by the development of compact neutron source devices. The availability, ease of operation, and cost-effectiveness offered by these compact neutron sources make BNCT more accessible to cancer treatment centers. Two compact neutron sources, one being miniature reactor-based (IHNI-1) and the other one being accelerator-based (NeuPex), have entered the clinical research phase and are planned for medical device registration. Moreover, several accelerator-based neutron source devices employing different technical routes are currently under construction, further expanding the options for BNCT implementation. In addition, the development of compact neutron sources serves as an experimental platform for advancing the development of new boron agents. Several research teams are actively involved in the development of boron agents. Various types of third-generation boron agents have been tested and studied in vitro and in vivo. Compared to other radiotherapy therapies, BNCT in mainland China still faces specific challenges due to its limited clinical trial data and its technical support in a wide range of professional fields. To facilitate the widespread adoption of BNCT, it is crucial to establish relevant technical standards for neutron devices, boron agents, and treatment protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452212PMC
http://dx.doi.org/10.3390/cancers15164060DOI Listing

Publication Analysis

Top Keywords

boron agents
20
compact neutron
16
mainland china
12
neutron sources
12
bnct mainland
8
neutron
8
cancer treatment
8
development compact
8
neutron source
8
source devices
8

Similar Publications

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

In this work, a series of boronated amidines based on the -dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [BHNHC(NH(CH)CH(NH)COOH)CH], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Carbapenemase OXA-48 and its variants pose a serious threat to the development of effective treatments for bacterial infections. OXA-48-producing Enterobacterales are the most prevalent carbapenemase-producing bacteria in large parts of the world. Although these bacteria exhibit low-level carbapenem resistance , the infections they cause are challenging to treat with conventional therapies, owing to their spread and complex detection in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!