A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Vitro Evaluation of the Antimicrobial Properties of Nanoparticles as New Agents Used in Teat Sealants for Mastitis Prevention in Dry Cows. | LitMetric

Mastitis prevention and treatment in dry cows are complex issues with limited solutions. The most common is intramammary antibiotic treatment. However, the effectiveness of this treatment varies among countries and even within herds in the same region. Therefore, it is necessary to develop new strategies for dry cow therapy. Metal nanoparticles (NPs), which have strong biocidal properties for treating diseases caused by bacteria, fungi, and algae, are increasingly used to reduce antibiotic use. In this study, AuNPs, CuNPs, AgNPs, PtNPs, NP-FeCs, and their triple complexes were used at different concentrations to evaluate their practical use in treating cows during their dry period. The nanoparticles were in hydrocolloid form and were added separately to form a mixture with beeswax, a mixture with oil, or a mixture based on vegetable glycerin and propylene glycol. The NPs' concentrations were 0.5, 1, 2, and 5 ppm. Gram-positive and Gram-negative bacteria, and fungi isolated from cows diagnosed with mastitis were used to determine pathogen viability. The results indicated that AuNPs, CuNPs, AgNPs, and their complexes show biocidal properties against mastitis pathogens. AgNPs at 5 ppm had the strongest biocidal properties and reduced 's survival rate by 50%; however, the nanoparticle complexes showed poor synergism. The strongest biocidal properties of NPs in wax and in glycerin mixed with glycol were shown against . Additionally, low nanoparticle concentrations showed no cytotoxicity for BME-UV1 bovine cells, suggesting that these mixtures might be used for further in vivo testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452312PMC
http://dx.doi.org/10.3390/biomedicines11082291DOI Listing

Publication Analysis

Top Keywords

biocidal properties
16
mastitis prevention
8
dry cows
8
bacteria fungi
8
aunps cunps
8
cunps agnps
8
strongest biocidal
8
properties
5
vitro evaluation
4
evaluation antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!