The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research.

Biomedicines

Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.

Published: August 2023

In recent decades, the pig has attracted considerable attention as an important intermediary model animal in translational biobehavioral research due to major similarities between pig and human neuroanatomy, physiology, and behavior. As a result, there is growing interest in using pigs to model many human neurological conditions and injuries. Pigs are highly intelligent and are capable of performing a wide range of behaviors, which can provide valuable insight into the effects of various neurological disease states. One area in which the pig has emerged as a particularly relevant model species is in the realm of neurotrauma research. Indeed, the number of investigators developing injury models and assessing treatment options in pigs is ever-expanding. In this review, we examine the use of pigs for cognitive and behavioral research as well as some commonly used physiological assessment methods. We also discuss the current usage of pigs as a model for the study of traumatic brain injury. We conclude that the pig is a valuable animal species for studying cognition and the physiological effect of disease, and it has the potential to contribute to the development of new treatments and therapies for human neurological and psychiatric disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452425PMC
http://dx.doi.org/10.3390/biomedicines11082165DOI Listing

Publication Analysis

Top Keywords

pigs model
8
human neurological
8
pig
5
model
5
pigs
5
pig translational
4
translational animal
4
animal model
4
model biobehavioral
4
biobehavioral neurotrauma
4

Similar Publications

Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.

View Article and Find Full Text PDF

Glyphosate-Based Herbicide Stress During Pregnancy Impairs Intestinal Development in Newborn Piglets by Modifying DNA Methylation.

J Agric Food Chem

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Glyphosate-based herbicide (GBH), a feed contaminant, has been proven to impair the growth and development of humans and animals. Previous research has revealed that maternal toxin exposure during pregnancy could cause permanent fetal changes by epigenetic modulation. However, there was insufficient evidence of the involvement of DNA methylation in maternal GBH exposure-induced intestinal health of offspring.

View Article and Find Full Text PDF

Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism.

J Mol Cell Cardiol Plus

September 2024

Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.

The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.

View Article and Find Full Text PDF

Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!