AI Article Synopsis

  • Accurate spike sorting is vital for analyzing neural activity, yet the filtering process has been overlooked compared to feature extraction and clustering.
  • This study introduces MultiFq, a fast spike sorting method using optimized filtering based on multi-frequency composite waveforms.
  • When paired with the conventional PCA-Km algorithm, MultiFq enhances sorting speed and accuracy, outperforming the more complex Wave-clus while being about 10 times faster.
  • The method's compatibility with other algorithms further improves sorting accuracy by up to 35%, demonstrating its efficiency and effectiveness in neural data analysis.

Article Abstract

Accurate spike sorting to the appropriate neuron is crucial for neural activity analysis. To improve spike sorting performance, it is essential to fully leverage each processing step, including filtering, spike detection, feature extraction, and clustering. However, compared to the latter two steps that were widely studied and optimized, the filtering process was largely neglected. In this study, we proposed a fast and effective spike sorting method (MultiFq) based on multi-frequency composite waveform shapes acquired through an optimized filtering process. When combined with the classical PCA-Km spiking sorting algorithm, our proposed MultiFq significantly improved its sorting performance and achieved as high performance as the complex Wave-clus did in both the simulated and in vivo datasets. But, the combined method was about 10 times faster than Wave-clus (0.16 s vs. 2.06 s in simulated datasets; 0.46 s vs. 2.03 s in in vivo datasets). Furthermore, we demonstrated the compatibility of our MultiFq by combining it with other sorting algorithms, which consistently resulted in significant improvement in sorting accuracy with the maximum improvement at 35.04%. The above results demonstrated that our proposed method could significantly improve the sorting performance with low computation cost and good compatibility by leveraging the multi-frequency composite waveform shapes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452241PMC
http://dx.doi.org/10.3390/brainsci13081156DOI Listing

Publication Analysis

Top Keywords

spike sorting
16
multi-frequency composite
12
composite waveform
12
waveform shapes
12
sorting performance
12
sorting
9
fast effective
8
effective spike
8
sorting method
8
based multi-frequency
8

Similar Publications

Marked point process variational autoencoder with applications to unsorted spiking activities.

PLoS Comput Biol

December 2024

Communication Science Laboratories, NTT Corporation, Kyoto, Japan.

Spike train modeling across large neural populations is a powerful tool for understanding how neurons code information in a coordinated manner. Recent studies have employed marked point processes in neural population modeling. The marked point process is a stochastic process that generates a sequence of events with marks.

View Article and Find Full Text PDF

Importance: Identifying environmental factors that contribute to disease onset/activity in PV stands to improve clinical outcomes and patient quality of life by strategies aimed at reducing specific disease promoting exposures and promoting personalized clinical management strategies.

Objective: To evaluate the association between hydroxychloroquine use and the development of pemphigus using population level, publicly available, FDA-generated data.

Design: Observational, retrospective, case-control, pharmacovigilance analysis.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Background: Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli.

View Article and Find Full Text PDF

With the use of high-density multi-electrode recording devices, electrophysiological signals resulting from action potentials of individual neurons can now be reliably detected on multiple adjacent recording electrodes. Spike sorting assigns these signals to putative neural sources. However, until now, spike sorting can only be performed after completion of the recording, preventing true real time usage of spike sorting algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!