Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the most important pathogens frequently associated with the main causes of equine infertility. In this study, we surveyed 22 strains of S. zooepidemicus collected during 2021 from cervico-uterine swabs of mares with endometritis. The genetic variability of the isolated strains was studied by multi-locus sequence typing (MLST) from whole-genome sequencing (WGS) data. The average length of reconstructed genomes was 2,088,286 bp (95% CI: 2,061,569 bp-2,114,967 bp), which was expected for S. zooepidemicus genomes. The assembled genomes were assigned to sequence types (STs) using the S. zooepidemicus scheme targeting seven loci (arcC, nrdE, proS, spi, tdk, tpi, yqiL) available in PubMLST database. MLST revealed a wide variability of STs with two (9.1%) novel STs identified in this study, precisely ST521 with two isolates and ST522 with one isolate. Furthermore, 4/22 (18.2%) isolates were assigned to ST92, 3/22 (13.6%) to ST205, 2/22 (9.1%) to ST475, and one strain (4.5%) for each of the following STs: ST10, ST30, ST39, ST49, ST101, ST132, ST147, ST314, ST369, ST467. Isolates were also tested for antimicrobial resistance using Kirby-Bauer disk diffusion method. Resistance to amoxicillin-clavulanate, ampicillin, amikacin, gentamicin, streptomycin, enrofloxacin, sulfamethoxazole-trimethoprim, tetracycline, oxytetracycline represented the most common resistance profile (13/22, 59.1%). No correlation between specific ST and antimicrobial resistance profile was found. Our study provides a comprehensive insight into the epidemiology, ST diversity and antimicrobial resistance profile of S. zooepidemicus strains, isolated in Italy, causing subfertility problems in mares.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-023-10165-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!