Free amino acids in potato tubers contribute to their nutritional value and processing quality. Exploring the natural variation in their accumulation in tubers across diverse genetic backgrounds is critical to potato breeding programs aiming to enhance or partition their distribution effectively. This study assessed variation in the tuber-bound free amino acids in a diversity panel of tetraploid potato clones developed and maintained by the Texas A&M Potato Breeding Program to explore their genetic basis and to obtain genomic-estimated breeding values for applied breeding purposes. Free amino acids content was evaluated in tubers of 217 tetraploid potato clones collected from Dalhart, Texas in 2019 and 2020, and Springlake, Texas in 2020. Most tuber amino acids were not affected by growing location, except histidine and proline, which were significantly lower (- 59.0%) and higher (+ 129.0%), respectively, at Springlake, Texas (a location that regularly suffers from abiotic stresses, mainly high-temperature stress). Single nucleotide polymorphism markers were used for genome-wide association studies and genomic selection of clones based on amino acid content. Most amino acids showed significant variations among potato clones and moderate to high heritabilities. Principal component analysis separated fresh from processing potato market classes based on amino acids distribution patterns. Genome-wide association studies discovered 33 QTL associated with 13 free amino acids. Genomic-estimated breeding values were calculated and are recommended for practical potato breeding applications to select parents and advance clones with the desired free amino acid content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457394PMC
http://dx.doi.org/10.1038/s41598-023-40880-5DOI Listing

Publication Analysis

Top Keywords

amino acids
32
free amino
24
amino acid
12
acid content
12
potato breeding
12
potato clones
12
amino
11
potato
9
tuber-bound free
8
acids
8

Similar Publications

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

Introduction: Crop rotation of tobacco with other crops could effectively break the negative impact of continuous tobacco cropping, but the mechanisms of intercropping system effects on tobacco, especially on the rhizosphere, are not clear.

Methods: In this study, we investigated the impact of intercropping system on the diversity and function of tobacco metabolites and microorganisms through metabolomic and metagenomic analyses of the tobacco rhizosphere microenvironment intercropped with maize and soybean.

Results: The results showed that the contents of huperzine b, chlorobenzene, and P-chlorophenylalanine in tobacco rhizosphere soils differed significantly among soybean-tobacco and maize-tobacco intercropping system.

View Article and Find Full Text PDF

The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.

View Article and Find Full Text PDF

Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).

View Article and Find Full Text PDF

Cystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!