AI Article Synopsis

  • Tuberculosis (TB) is caused by the airborne bacteria Mycobacterium tuberculosis (Mtb), and while the role of antibodies in protecting against it isn't fully understood, they may play a crucial part in host defense.
  • This study analyzed the IgG/IgA memory B cell responses in healthy individuals exposed to TB, identifying a human monoclonal antibody that can protect against the disease by targeting a specific virulence factor called LpqH.
  • Findings showed that the protective effects varied depending on the antibody type, with IgG2 and IgA providing the strongest defense, suggesting new avenues for improving TB vaccines and understanding natural immunity.

Article Abstract

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis (Mtb). Whilst a functional role for humoral immunity in Mtb protection remains poorly defined, previous studies have suggested that antibodies can contribute towards host defense. Thus, identifying the critical components in the antibody repertoires from immune, chronically exposed, healthy individuals represents an approach for identifying new determinants for natural protection. In this study, we performed a thorough analysis of the IgG/IgA memory B cell repertoire from occupationally exposed, immune volunteers. We detail the identification and selection of a human monoclonal antibody that exhibits protective activity in vivo and show that it targets a virulence factor LpqH. Intriguingly, protection in both human ex vivo and murine challenge experiments was isotype dependent, with most robust protection being mediated via IgG2 and IgA. These data have important implications for our understanding of natural mucosal immunity for Mtb and highlight a new target for future vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457302PMC
http://dx.doi.org/10.1038/s41541-023-00710-1DOI Listing

Publication Analysis

Top Keywords

human monoclonal
8
monoclonal antibody
8
mycobacterium tuberculosis
8
immunity mtb
8
protection
5
anti-lpqh human
4
antibody asymptomatic
4
asymptomatic individual
4
individual mediates
4
mediates protection
4

Similar Publications

The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.

View Article and Find Full Text PDF

This study was aimed to evaluate the cost-effectiveness of pembrolizumab with chemotherapy (pembrolizumab combination therapy) and compare it with standard-of-care platinum-based chemotherapy (chemotherapy alone) as a first-line treatment for metastatic nonsquamous NSCLC from the perspective of Taiwan's third-party-payer public health-care system. We used a partitioned survival model with an estimated time horizon of 10 years. The partitioned survival model uses Kaplan-Meier estimates of progression-free and overall survival from the KEYNOTE-189 clinical trial.

View Article and Find Full Text PDF

Development of an anti-LAIR1 antibody-drug conjugate for acute myeloid leukemia therapy.

Int J Biol Macromol

January 2025

Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.

Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).

View Article and Find Full Text PDF

Infiltrating plasma cells maintain glioblastoma stem cells through IgG-Tumor binding.

Cancer Cell

December 2024

National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:

Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.

View Article and Find Full Text PDF

Patient-derived NMDAR mAbs combined with single-particle cryo-electron microscopy reveal multiple GluN1 epitopes and distinct functional effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!