Allopurinol and oxypurinol differ in their strength and mechanisms of inhibition of xanthine oxidoreductase.

J Biol Chem

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan. Electronic address:

Published: September 2023

Xanthine oxidoreductase is a metalloenzyme that catalyzes the final steps in purine metabolism by converting hypoxanthine to xanthine and then uric acid. Allopurinol, an analog of hypoxanthine, is widely used as an antigout drug, as xanthine oxidoreductase-mediated metabolism of allopurinol to oxypurinol leads to oxypurinol rotation in the enzyme active site and reduction of the molybdenum Mo(VI) active center to Mo(IV), inhibiting subsequent urate production. However, when oxypurinol is administered directly to a mouse model of hyperuricemia, it yields a weaker urate-lowering effect than allopurinol. To better understand its mechanism of inhibition and inform patient dosing strategies, we performed kinetic and structural analyses of the inhibitory activity of oxypurinol. Our results demonstrated that oxypurinol was less effective than allopurinol both in vivo and in vitro. We show that upon reoxidation to Mo(VI), oxypurinol binding is greatly weakened, and reduction by xanthine, hypoxanthine, or allopurinol is required for reformation of the inhibitor-enzyme complex. In addition, we show oxypurinol only weakly inhibits the conversion of hypoxanthine to xanthine and is therefore unlikely to affect the feedback inhibition of de novo purine synthesis. Furthermore, we observed weak allosteric inhibition of purine nucleoside phosphorylase by oxypurinol which has potentially adverse effects for patients. Considering these results, we propose the single-dose method currently used to treat hyperuricemia can result in unnecessarily high levels of allopurinol. While the short half-life of allopurinol in blood suggests that oxypurinol is responsible for enzyme inhibition, we anticipate multiple, smaller doses of allopurinol would reduce the total allopurinol patient load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511816PMC
http://dx.doi.org/10.1016/j.jbc.2023.105189DOI Listing

Publication Analysis

Top Keywords

allopurinol
10
oxypurinol
9
allopurinol oxypurinol
8
xanthine oxidoreductase
8
hypoxanthine xanthine
8
xanthine
6
inhibition
5
oxypurinol differ
4
differ strength
4
strength mechanisms
4

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.

Background: Dementia is a mental condition defined by a severe loss of intellectual ability that interferes with one's occupational or social activities. The rapid increase in the number of patients with dementia and Alzheimer's disease (AD) will result in tremendous consequences for our society and economy. Hypoxanthine is a purine compound that is implicated in the progression of AD.

View Article and Find Full Text PDF

Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.

View Article and Find Full Text PDF

Acute kidney injury following CAR-T cell therapy: a nephrologist's perspective.

Clin Kidney J

January 2025

Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain.

Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome.

View Article and Find Full Text PDF

Purpose: Serum uric acid (SUA) is primarily produced through the hydrolysis of purines in the liver, with its excretion largely handled by the kidneys. Urate transporter 1 (URAT1) inhibitors are known to enhance uric acid elimination via the kidneys, but they also increase the risk of kidney stone formation. Currently, xanthine oxidase (XO) inhibitors are the predominant uric-lowering medications on the market.

View Article and Find Full Text PDF

In the current study, new pyranopyrazole analogues (9a-d and 10a-d) were synthesized through a one-pot condensation reaction of 2-arylacetohydrazide. The inhibitory abilities were investigated against the XO enzyme through experimental and molecular docking analyses. The synthesis studies were based on ultrasound-mediated condensation reactions of four-component systems containing 2-arylacetohydrazide, ethyl acetoacetate, indoline-2,3-dione, and ethyl 2-cyanoacetate/malononitrile in various solvents and catalysts to yield pyranopyrazole analogues (9a-d and 10a-d) in a short reaction time and remarkably favorable yields ranging from 79-92%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!