Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: A simple, highly specific, accurate and fast method by smartphone-based digital imaging was developed for estimating lidocaine hydrochloride in pharmaceutical formulations.
Material And Methods: To obtain the images, a Galaxy A03 Core smartphone and an image acquisition device developed in the laboratory were used to control the incident factors in reproducibility of the measurements. The processing of the images was carried out with the Color Grab application. Finally, the absorbance values were calculated using the RGB intensity values of blank, standard, and sample solutions. The proposed method was compared with spectroscopic and chromatographic methods.
Results: The reaction between copper and lidocaine hydrochloride was characterized, showing better results in an equimolar ratio and maintaining the pH of the solution above 11.5. The use of the device for the capture of digital images allowed to control those sensitive parameters for reproducibility so that the analytical measurements showed adequate precision and accuracy. Validation of the main parameters of the method showed compliance with acceptance criteria. The application of the method for the analysis of injectable samples achieved reliable results, which were statistically similar to other reference instrumental methods.
Conclusion: The proposed method presented figures of merit in relation to linearity, precision, selectivity, accuracy, and robustness; it was carried out by designing and manufacturing a device for capturing digital images on a smartphone, which were analyzed to obtain RGB intensity values. These data are finally used to calculate absorbance values of solutions. All these elements provide this work with innovative characteristics in the field of analysis for control of pharmaceutical formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pharma.2023.08.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!