By observing the formation behavior of ice crystals, the quality of food products under different freezing conditions can be intuitively judged. In this paper, large yellow croaker was taken as the research object, and a novel cryomicroscopic system was developed to directly observe the structure of ice crystals during the freezing process. The cryoprotective effects of 4% sucrose +4% sorbitol (SU + SO), 4% xylo-oligosaccharide (XO), 4% xylo-oligosaccharide + 0.3% tetrasodium pyrophosphate (XO + TSPP) and 0.2% antifreeze protein (AFP) at different freezing temperatures were investigated. And the evaluation indicators, such as cell deformation degree, equivalent diameters, roundness, elongation and fractal dimension were introduced to quantify the damage of ice crystals to muscle tissues and fibers. The results indicate that reducing the freezing temperature and adding cryoprotectants can improve the quality of large yellow croaker. AFP has the best cryoprotective effect, with a reduction in cell deformation degree of 54.78% and 67.83% compared to the Control group at -5 °C and -20 °C, respectively. SU + SO and XO have the equivalent antifreeze effect, which is slightly inferior to XO + TSPP. In addition, physical parameters of large yellow croaker samples were measured to verify the influence of ice crystal structure on product quality. Therefore, direct observation of the ice crystal formation process and evaluation of ice crystal structure can accurately reflect the quality of frozen products, which is of great significance for the development of refrigeration and preservation technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cryobiol.2023.104580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!