The customization of hybrid nanofluids to achieve a particular and controlled growth rate of thermal transport is done to meet the needs of applications in heating and cooling systems, aerospace and automotive industries, etc. Due to the extensive applications, the aim of the current paper is to derive a numerical solution to a wall jet flow problem through a stretching surface. To study the flow problem, authors have considered a non-Newtonian Eyring-Powell hybrid nanofluid with water and CoFeOand TiOnanoparticles. Furthermore, the impact of a magnetic field and irregular heat sink/source are studied. To comply with the applications of the wall jet flow, the authors have presented the numerical solution for two cases; with and without a magnetic field. The numerical solution is derived with a similarity transformation and MATLAB-based bvp4c solver. The value of skin friction for wall jet flow at the surface decreases by more than 50% when the magnetic fieldMA=0.2is present. The stream function value is higher for the wall jet flow without the magnetic field. The temperature of the flow rises with the dominant strength of the heat source parameters. The results of this investigation will be beneficial to various applications that utilize the applications of a wall jet, such as in car defrosters, spray paint drying for vehicles or houses, cooling structures for the CPU of high-processor laptops, sluice gate flows, and cooling jets over turbo-machinery components, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/acf3f6 | DOI Listing |
J Aerosol Sci
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA.
The use of air-jet dry powder inhalers (DPIs) offers a number of advantages for the administration of pharmaceutical aerosols, including the ability to achieve highly efficient and potentially targeted aerosol delivery to the lungs of children using the oral or trans-nasal routes of administration. To better plan targeted lung delivery of pharmaceutical aerosols with these inhalers, more information is needed on the extrathoracic (ET) depositional loss in pediatric subjects when using relatively small (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
College of Resources, Shandong University of Science and Technology, Taian, 271019, Shandong, China.
Because coal seam mining with high geostress and high gas pressure is prone to coal-rock-gas compound dynamic disasters, a disaster energy equation considering the influence of roof elastic energy is established, and a disaster energy criterion considering the influence of roof elastic energy is derived and introduced into COMSOL software to conduct numerical simulations of coal seam mining under different geostress and gas pressures. The study revealed that the increase of ground stress reduces the gas pressure required for disaster occurrence. When the gas pressure reaches a certain value, the disaster will occur even if the ground stress is very small.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Hiroshima, JPN.
Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic.
The aim of this study was to investigate the potential of polymeric cell structures for the production of energy absorbers and to focus on the geometric optimization of polymeric cell structures producible by additive technologies to achieve the required deformation characteristics, high material efficiency and the low weight of the resulting absorber. A detailed analysis of different types of cell structures (different lattice structures and honeycombs) and their properties was performed. Honeycombs, which have been further examined in more detail, are best suited for absorbing large amounts of energy and high levels of material efficiency at known load directions.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
CNRS, LaMCoS, UMR5259, INSA Lyon, 69621, Villeurbanne, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!