We investigated the role(s) of the damage-inducible SOS response dinB and imuBC gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, Pseudomonas aeruginosa. We found that the overall numbers of ciprofloxacin resistant (Cip) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective dinB gene, but could be elevated to levels approaching wild-type when these cells were supplied with the dinB gene on a plasmid vector; in turn, firmly establishing a role for the dinB gene product, error-prone DNA polymerase IV, in the generation of Cip mutations in P. aeruginosa. Further, we report that products of the SOS-regulated imuABC gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating Cip mutations in this organism, since the yields of Cip mutations were substantially decreased in imuB- or imuC-defective cells compared to wild-type. Intriguingly, we found that the mutability of a dinB-defective strain could not be rescued by overexpression of the imuBC genes. And similarly, overexpression of the dinB gene either only modestly or else failed to restore Cip mutations in imuB- or imuC-defective cells, respectively. Combined, these results indicated that the products of the dinB and imuBC genes were acting in the same pathway leading to the generation of Cip mutations in P. aeruginosa. In addition, we provide evidence indicating that the general stress response sigma factor σ, RpoS, is required for mutagenesis in this organism and is in part at least modulating the dinB (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in P. aeruginosa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2023.111836DOI Listing

Publication Analysis

Top Keywords

cip mutations
20
dna polymerase
16
dinb gene
16
generation ciprofloxacin-resistance
12
ciprofloxacin-resistance mutations
12
mutations aeruginosa
12
dinb
8
dinb dna
8
mutations
8
pseudomonas aeruginosa
8

Similar Publications

Comprehensive knowledge of mechanisms driving the acquisition of antimicrobial resistance is essential for the development of new drugs with minimized resistibility. To gain this knowledge, we combine experimental evolution in a continuous culturing device, the morbidostat, with whole genome sequencing of evolving cultures followed by characterization of drug-resistant isolates. Here, this approach was used to assess evolutionary dynamics of resistance acquisition against DNA gyrase/topoisomerase TriBE inhibitor GP6 in Escherichia coli and Acinetobacter baumannii.

View Article and Find Full Text PDF

Background: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Genomic perspective on the bacillus causing paratyphoid B fever.

Nat Commun

December 2024

Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, F-75015, France.

Paratyphoid B fever (PTB) is caused by an invasive lineage (phylogroup 1, PG1) of Salmonella enterica serotype Paratyphi B (SPB). However, little was known about the global population structure, geographic distribution, and evolution of this pathogen. Here, we report a whole-genome analysis of 568 historical and contemporary SPB PG1 isolates, obtained globally, between 1898 and 2021.

View Article and Find Full Text PDF

Exomer is a protein complex that facilitates trafficking between the Golgi and the plasma membrane (PM). exomer is composed of Cfr1 and Bch1, and we have found that full activation of the cell integrity pathway (CIP) in response to osmotic stress requires exomer. In the wild-type, the CIP activators Rgf1 (Rho1 GEF) and Pck2 (PKC homologue) and the MEK kinase Mkh1 localize in the PM, internalize after osmotic shock and re-localize after adaptation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!