Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling.

J Contam Hydrol

Institute of Environmental Sciences, Bogazici University, Bebek, 34342 Istanbul, Turkey. Electronic address:

Published: September 2023

In this study we investigate the synergetic effects of combining surfactant-enhanced dissolution with in-situ oxidation of a pool-dominated PCE DNAPL source zone entrapped in porous media. Flow cell flushing experiments packed with silica sand and natural calcareous soil were conducted with a surfactant (Tween 80) and permanganate (MnO) used as dissolution and oxidation agents, respectively. The resultant breakthrough curves exhibited a multiple step behavior with mass removal controlled in the latter stages by the less-accessible DNAPL mass. DNAPL spatial architecture, flow-field heterogeneity, and flushing solution all influenced the remediation effort. When taking into account both the surfactant-enhanced dissolution and permanganate oxidation processes, mass-flux reduction/mass-removal behavior relationships indicated that the inclusion of oxidation in the remediation scheme delayed the drop in mass flux from the source zone, leading to improved DNAPL removal efficiency. Numerical modeling was also performed to further evaluate the efficacy of the surfactant-enhanced chemical oxidation of DNAPL PCE with permanganate. The system of reaction equations available in the multiphase flow simulator UTCHEM were adapted to simulate the chemical oxidation process in the presence of a surfactant. The model results yield lower oxidation reaction rate constants in the presence of Tween 80, indicating that Tween 80 can interfere with the reaction rate. However, the increase in the solubility of PCE in the presence of Tween 80 more than compensates for the decrease in reaction rate constant. Overall, for Tween 80/MnO applied at sufficient dosages, more efficient DNAPL zone remediation was achieved compared to surfactant flushing or permanganate oxidation alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2023.104233DOI Listing

Publication Analysis

Top Keywords

source zone
12
reaction rate
12
oxidation
9
in-situ oxidation
8
oxidation dnapl
8
dnapl source
8
numerical modeling
8
surfactant-enhanced dissolution
8
permanganate oxidation
8
chemical oxidation
8

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.

View Article and Find Full Text PDF

Plant genebanks contain large numbers of germplasm accessions that likely harbor useful alleles or genes absent in commercial plant breeding programs. Broadening the genetic base of commercial alfalfa germplasm with these valuable genetic variations can be achieved by screening the extensive genetic diversity in germplasm collections and enabling maximal recombination among selected genotypes. In this study, we assessed the genetic diversity and differentiation of germplasm pools selected in northern U.

View Article and Find Full Text PDF

Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning.

Sci Total Environ

January 2025

Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China.

This study integrated data-driven interpretable machine learning (ML) with statistical methods, complemented by knowledge-driven discrimination diagrams, to identify the primary driving factors of heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination in agricultural soils influenced by complex sources in a rapidly industrializing region of a megacity in southern China. First, the statistical characteristics of the concentrations of HMs and PAHs, and their correlations with the environmental covariates were explored. Three ML models and a statistical model comprising multiple environmental variable predictors were developed and assessed to predict the concentration of HMs in the agricultural soil.

View Article and Find Full Text PDF

Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems.

Glob Chang Biol

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.

Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!