Cations can achieve excellent hydration lubrication at smooth interfaces under both microscale and macroscale conditions due to the boundary layer composed of hydration shells surrounding charges, but what about anions? Commonly used friction pairs are negatively charged at the solid/solution interface. Achieving anionic adsorption through constructing positively charged surfaces is a prerequisite for studying the hydration lubrication of anions. Here we report the hydration layer composed of anions adsorbed on the positively charged polymer/sapphire interface at acidic electrolyte solutions with pH below the isoelectric point, which contributes to the hydration lubrication of anions. Strongly hydrated anions (for the case of SO) exhibit stable superlubricity comparable to cations, with strikingly low boundary friction coefficient of 0.003-0.007 under contact pressures above 15 MPa without a running-in period. The hydration lubrication performance of anions is determined by both the ionic hydration strength and ion adsorption density based on the surface potential and tribological experiments. The results shed light on the role of anions in superlubricity and hydration lubrication, which may be relevant for understanding the lubrication mechanism and improving lubrication performance in acidic environments, for example, in acid pumps, sealing rings of compressors for handling acidic media, and processing devices of nuclear waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c09277 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFPharmaceutics
December 2024
Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China.
: Postoperative abdominal adhesion is a prevalent complication following abdominal surgery, with the incidence of adhesion reaching up to 90%, which may precipitate a range of adverse outcomes. Although fibrous membranes loaded with various anti-inflammatory or other drugs have been proposed for anti-adhesion, most of them suffer from drug-induced adverse effects. : In this study, a lecithin-based electrospun polylactic acid (PLA) nanofibrous membrane (L/P-NM) was developed for the prevention of postoperative abdominal adhesion, utilizing the hydration lubrication theory.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!