We report the emergence of large zigzag bands in a population of reversibly actuated magnetic rotors that behave as active shakers, namely squirmers that shake the fluid around them without moving. The shakers collectively organize into dynamic structures displaying self-similar growth and generate topological defects in the form of cusps that connect vortices of rolling particles with alternating chirality. By combining experimental analysis with particle-based simulation, we show that the special flow field created by the shakers is the only ingredient needed to reproduce the observed spatiotemporal pattern. We unveil a self-organization scenario in a collection of driven particles in a viscoelastic medium emerging from the reduced particle degrees of freedom, as here the frozen orientational motion of the shakers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.068301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!