We uncover a dynamical entanglement transition in a monitored quantum system that is heralded by a local order parameter. Classically, chaotic systems can be stochastically controlled onto unstable periodic orbits and exhibit controlled and uncontrolled phases as a function of the rate at which the control is applied. We show that such control transitions persist in open quantum systems where control is implemented with local measurements and unitary feedback. Starting from a simple classical model with a known control transition, we define a quantum model that exhibits a diffusive transition between a chaotic volume-law entangled phase and a disentangled controlled phase. Unlike other entanglement transitions in monitored quantum circuits, this transition can also be probed by correlation functions without resolving individual quantum trajectories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.060403 | DOI Listing |
Entropy (Basel)
December 2024
Department of Physics, Federal Technological Education Center of Minas Gerais, Belo Horizonte 30510-000, MG, Brazil.
In this paper, we analyzed the influence of the spin Nernst effect on quantum correlation in a layered ferrimagnetic model. In the study of three-dimensional ferrimagnets, the focus is on materials with a specific arrangement of spins, where the neighboring spins are parallel and the others are antiparallel. The anisotropic nature of these materials means that the interactions between spins depend on their relative orientations in different directions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA.
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.
Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Inner Mongolia Agricultural University, China.
This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!