"Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.

ACS Appl Mater Interfaces

School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China.

Published: September 2023

Aerogels with low density, high mechanical strength, and excellent elasticity have a wide potential for applications in wastewater treatment, thermal management, and sensors. However, the fabrication of such aerogels from biomass materials required complex preparation processes. Herein, a sustainable and facile strategy was reported to construct lignin/cellulose aerogels (LCMA) with three-dimensional interconnected structures by introducing homologous lignin with a polyphenyl propane structure as a structural enhancer through a top-down directional freezing approach, prompting a 2036% enhancement in compressive modulus and an 8-12-fold increase in oil absorption capacity. In addition, the hydrophobic aerogels with superelasticity were achieved by combining the aligned polygon-like structure and flexible silane chains, which exhibited remarkable compressional fatigue resistance and superhydrophobicity (WCA = 168°). Attributed to its unique pore design and surface morphology control, the prepared aerogel exhibited excellent performance in immiscible oil-water separation and water-in-oil emulsion separation. Due to the ultra-low density (8.3 mg·cm) as well as high porosity (98.87%), the obtained aerogel showed a low thermal conductivity (0.02565 ± 0.0024 W·m·K), demonstrating a potential in insulation applications. The synthetic strategy and sustainability concept presented in this work could provide guidance for the preparation of advanced biomass-based aerogels with unique properties for a wide range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c07713DOI Listing

Publication Analysis

Top Keywords

aerogels
6
"rigid-flexible" anisotropic
4
anisotropic biomass-derived
4
biomass-derived aerogels
4
aerogels superior
4
superior mechanical
4
mechanical properties
4
properties oil
4
oil recovery
4
recovery thermal
4

Similar Publications

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

Interlayer and defect engineering significantly affects the electrical conductivity and electromagnetic interference (EMI) shielding of TiCT MXene. Previous studies have prioritized the size of the intercalant over its synergy with chemical affinity, limiting the elucidation of the intercalation mechanism and the precise control of the interlayer spacing (spacing). Herein, we synthesize MXene aerogels with a tunable spacing and defect density using a series of amine molecules of different sizes and chemical affinities as intercalants and cross-linkers.

View Article and Find Full Text PDF

While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!