The expression of the two major virulence genes of - (the major subunit of the toxin co-regulated pilus) and (cholera toxin)-is regulated by the ToxR regulon, which is triggered by environmental stimuli during infection within the human small intestine. Special culture methods are required to induce the expression of virulence genes in in the laboratory setting. In the present study, induction of the expression of virulence genes by two point mutations (65th and 139th amino acids) in , which is produced by the ToxR regulon and activates the transcription of the virulence genes in , under laboratory culture conditions has been investigated. Each of the four alleles assessed displayed different transcriptional activator functions in a given strain. Although the ToxR regulon has been known to not be expressed by El Tor biotype strains cultured under standard laboratory conditions, the variant alleles that we assessed in this study enabled the expression virulence genes in El Tor biotype strains grown under simple culture conditions comprising shake culture in LB medium, suggesting that the regulation of virulence gene expression may be regulated more complexly than previously thought and may involve additional factors beyond the production of ToxT by the ToxR regulon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467113 | PMC |
http://dx.doi.org/10.3390/toxins15080507 | DOI Listing |
Lett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFVirulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200 Boulogne-sur-Mer, France. Electronic address:
Aquaculture is crucial for meeting global seafood demand; however, intensification often leads to the development of bacterial diseases that threaten productivity. Dicentrarchus labrax, a key species in European aquaculture, is highly vulnerable to vibriosis, primarily caused by Vibrio harveyi. This study investigates genetic diversity of V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!