A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential Application Performance of Hydrochar from Kitchen Waste: Effects of Salt, Oil, Moisture, and pH. | LitMetric

The surge in kitchen waste production is causing food-borne disease epidemics and is a public health threat worldwide. Additionally, the effectiveness of conventional treatment approaches may be hampered by KW's high moisture, salt, and oil content. Hydrothermal carbonization (HTC) is a promising new technology to convert waste biomass into environmentally beneficial derivatives. This study used simulated KW to determine the efficacy of hydrothermal derivatives (hydrochar) with different salt and oil content, pH value, and solid-liquid ratio for the removal of cadmium (Cd) from water and identify their high heating value (HHV). The findings revealed that the kitchen waste hydrochar (KWHC) yield decreased with increasing oil content. When the water content in the hydrothermal system increased by 90%, the yield of KWHC decreased by 65.85%. The adsorption capacity of KWHC remained stable at different salinities. The KWHC produced in the acidic environment increases the removal efficiency of KWHC for Cd. The raw material was effectively transformed into a maximum HHV (30.01 MJ/kg). HTC is an effective and secure method for the resource utilization of KW based on the adsorption capacity and combustion characteristic indices of KWHC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459985PMC
http://dx.doi.org/10.3390/toxics11080679DOI Listing

Publication Analysis

Top Keywords

kitchen waste
12
salt oil
12
oil content
12
content hydrothermal
8
adsorption capacity
8
kwhc
6
potential application
4
application performance
4
performance hydrochar
4
hydrochar kitchen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!