Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of .

Metabolites

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China.

Published: July 2023

AI Article Synopsis

  • The study investigates how the processing stages of a medicinal orchid species (referred to as "Fengdou") affect its metabolites, using techniques like metabolomics and network pharmacology.
  • A total of 628 metabolites were detected, with 109 identified as differential metabolites that display potential pharmacological activity.
  • The findings suggest that the processing enhances the levels of certain beneficial metabolites, which may contribute to anticoagulant, hypoglycemic, and tumor-inhibiting effects, thus improving the orchid's medicinal quality.

Article Abstract

() is a precious medicinal species of Orchidaceae, and the product obtained by hot processing is called "Fengdou". At present, the research on the processing quality of mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and "Fengdou" products. To investigate the effect of processing on metabolites of in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite-target-disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the "Fengdou" product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of and improve its medicinal quality to a certain extent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456568PMC
http://dx.doi.org/10.3390/metabo13080886DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
molecular docking
12
differential metabolites
12
metabolites
11
pharmacology molecular
8
processing metabolites
8
metabolites processing
8
metabolites potential
8
metabolites targets
8
processing
7

Similar Publications

ZIC1 is a context-dependent medulloblastoma driver in the rhombic lip.

Nat Genet

January 2025

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).

View Article and Find Full Text PDF

Network pharmacology and molecular docking to explore mechanisms of clozapine-induced cardiac arrest.

J Psychiatry Neurosci

January 2025

From the Computational Biology Centre and the Laboratory of Psychiatric-Neuroimaging-Genetic and Comorbidity, Tianjin Anding Hospital, Tianjin Mental Health Centre of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.

Background: Clozapine is superior to all other antipsychotics in treating schizophrenia in terms of its curative efficacy; however, this drug is prescribed only as a last resort in the treatment of schizophrenia, given its potential to induce cardiac arrest. The mechanism of clozapine-induced cardiac arrest remains unclear, so we aimed to elucidate the potential mechanisms of clozapine-induced cardiac arrest using network pharmacology and molecular docking.

Methods: We identified and analyzed the overlap between potential cardiac arrest-related target genes and clozapine target genes.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.

View Article and Find Full Text PDF

Sepsis is a state of systemic immune dysregulation and organ failure that is frequently associated with severe brain disability. Epidemiological studies have indicated that younger females have better prognosis and clinical outcomes relative to males, though the sex-dependent response of the brain to sepsis during post-sepsis recovery remains largely uncharacterized. Using a modified polymicrobial intra-abdominal murine model of surgical sepsis, we characterized the acute effects of intra-abdominal sepsis on peripheral inflammation, brain inflammation and brain functional connectivity in young adult mice of both sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!