The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455662 | PMC |
http://dx.doi.org/10.3390/md21080451 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2025
Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan.
A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.
View Article and Find Full Text PDFExtremophiles
January 2025
School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, People's Republic of China.
Four halophilic archaeal strains were isolated from sea salt and a saline lake in China. Based on phylogenetic and phylogenomic analyses, the four strains are related to the genera of Halobellus, Halobaculum, and Halorarum within the family Haloferacaceae. The four strains possess genes responsible for carotenoid synthesis, maintenance of a high internal salt concentration, as well as diverse enzymes with biotechnological potential.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
We present the first documented case of highly pathogenic avian influenza virus (HPAIV) subtype H5N5 in an Atlantic walrus (). The animal was found dead in Svalbard, Norway, in 2023. Sequence analysis revealed the highest genetic similarity with virus isolates from different avian hosts.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Department of Bioscience and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, South Korea.
We present the complete genome sequence of polyhydroxyalkaonate-accumulating moderately thermophilic HS-12-14 strain, isolated from a Korean hot spring. These findings contribute to valuable insights into the biosynthesis of polyhydroxyalkaonates in thermophiles and enhance understanding of strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!