Surface chemistry evaluation is crucial in assessing the efficacy of chemical decontamination products for titanium implants. This study aimed to investigate the effectiveness of chemical decontamination solutions in cleaning a contaminated dental implant surface and to evaluate the potential of combining Pluronic gel with hydrogen peroxide (NuBoneClean) by evaluating pellicle disruption and re-formation on implant surfaces. In addition, ensuring safety with in vitro and human testing protocols. X-ray Photoelectron Spectroscopy (XPS) was utilised for surface analysis. All the tested gels had some effect on the surface cleanness except for PrefGel. Among the tested chemical decontamination candidates, NuBoneClean demonstrated effectiveness in providing a cleaner titanium surface. Furthermore, none of the tested chemical agents exhibited cytotoxic effects, and the safety assessment showed no adverse events. The results of this study highlight the significance of conducting comprehensive evaluations, encompassing safety and efficacy, before introducing new chemical agents for dental treatments. The findings suggest that NuBoneClean shows potential as a chemical decontamination solution for implant surfaces. However, further investigation through randomised clinical trials is necessary. By adhering to rigorous testing protocols, the development of safe and efficient chemical decontamination strategies can be advanced, benefiting patients and promoting progress in implant dentistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455251 | PMC |
http://dx.doi.org/10.3390/jfb14080394 | DOI Listing |
J Hazard Mater
December 2024
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address:
Phenylarsonic acid (PAA) compounds, widely used in animal husbandry, pose a considerable environmental threat owing to their potential transformation into toxic inorganic arsenic species. To efficiently decontaminate PAA and adsorb secondary As(V), a hybrid CuFeO-modified carbon nanotube (CuFeO-CNT) filter was developed in this study. The hybrid CuFeO-CNT filter functioned as an effective catalyst, convective filtration medium, electrode, and adsorbent.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.
Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions.
View Article and Find Full Text PDFCureus
November 2024
Faculty of Nursing, Japanese Red Cross Toyota College of Nursing, Toyota, JPN.
This study explored the use of virtual reality (VR) in disaster preparedness education, focusing on VR scenarios, disaster types, and user interactivity to identify gaps in existing research. A scoping review methodology, based on the Arksey and O'Malley framework and Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Scoping Reviews (PRISMA-ScR) guidelines, was used, and the protocols were registered in the UMIN Clinical Trials Registry (UMIN000052800). The review included PubMed, CINAHL, the Cochrane Central Register of Controlled Trials in the Cochrane Library, and Ichushi-Web of the Japan Medical Abstract Society, with data up to January 31, 2024.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
Contamination of water bodies is a significant global issue that results from the deliberate release of pollutants into the environment, especially from mining and metal processing industries. The main pollutants generated by these industries are metallic wastes, particularly metals, which can cause adverse effects on the environment and human health. Therefore, it is crucial to develop effective and sustainable approaches to prevent their discharge into the environment.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute of Green Chemistry and Chemical Technology, Advanced Chemical Engineering Laboratory of Green Materials and Energy of Jiangsu Province, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region. Electronic address:
Developing highly efficient bimetallic metal-organic frameworks (MOFs) as catalysts for Fenton-like reactions holds significant promise for decontamination processes. Although MOFs with excellent decontamination capabilities are achievable, ensuring their long-term stability, especially in the organoarsenic harmless treatment, remains a formidable challenge. Herein, we proposed a unique nanoconfinement strategy using graphene oxide (GO)-supported Prussian blue analogs (PBA) as catalytic membrane, which modulated the peroxymonosulfate (PMS) activation in p-arsanilic acid (p-ASA) degradation from traditional radical pathways to a synergy of both radical and non-radical pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!