Methods for assessing three-dimensional (3D) breast volume are becoming increasingly popular in breast surgery. However, the precision of intraoperative volumetric assessment is still unclear. Until now, only non-validated scanning systems have been used for intraoperative volumetric analyses. This study aimed to assess the feasibility, handling, and accuracy of a commercially available, validated, and portable device for intraoperative 3D volumetric evaluation. All patients who underwent breast surgery from 2020 to 2022 were identified from our institutional database. Intraoperative 3D volumetric assessments of 103 patients were included in this study. Standardized 3D volumetric measurements were obtained 3 months postoperatively to compare the intraoperatively generated volumetric assessment. All of the study participants were women with a mean age of 48.3 ± 14.7 years (range: 20-89). The mean time for intraoperative volumetric assessment was 8.7 ± 2.6 min. The postoperative 3D volumetric assessment, with a mean volume of 507.11 ± 206.29 cc, showed no significant difference from the intraoperative volumetric measurements of 504.24 ± 276.61 cc ( = 0.68). The mean absolute volume difference between the intraoperative simulations and postoperative results was 27.1 cc. Intraoperative 3D volumetric assessment using the VECTRA H2 imaging system seems to be a feasible, reliable, and accurate method for measuring breast volume. Based on this finding, we plan to investigate whether volumetric objective evaluations will help to improve breast symmetry in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456100 | PMC |
http://dx.doi.org/10.3390/jpm13081262 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
Purpose: To use imaging data from stereotactic MR-guided online adaptive radiotherapy (SMART) of ultracentral lung tumors (ULT) for development of a safe non-adaptive approach towards stereotactic body radiotherapy (SBRT) of ULT.
Patients And Methods: Analysis is based on 19 patients with ULT who received SMART (10 × 5.0-5.
Healthc Technol Lett
December 2024
Despite the benefits of minimally invasive surgery, interventions such as laparoscopic liver surgery present unique challenges, like the significant anatomical differences between preoperative images and intraoperative scenes due to pneumoperitoneum, patient pose, and organ manipulation by surgical instruments. To address these challenges, a method for intraoperative three-dimensional reconstruction of the surgical scene, including vessels and tumors, without altering the surgical workflow, is proposed. The technique combines neural radiance field reconstructions from tracked laparoscopic videos with ultrasound three-dimensional compounding.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
Surg Clin North Am
December 2024
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Shanford Univeristy Hospital, 300 Pasteur Drive, H3680, Stanford, CA 94305-5655, USA. Electronic address:
Management of intrahepatic cholangiocarcinoma relies on a thorough understanding of the tumor's location and proximity to critical vasculobiliary structures. Mid-common bile duct tumors may require hemihepatectomy or pancreatoduodenectomy based on the status of the intraoperative frozen section. Distal common bile tumors are treated with pancreatoduodenectomy.
View Article and Find Full Text PDFConf Comput Vis Pattern Recognit Workshops
June 2024
Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!