The dual functions of KDM7A in HBV replication and immune microenvironment.

Microbiol Spectr

Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.

Published: August 2023

KDM7A (lysine demethylase 7A, also known as JHDM1D) is a histone demethylase, it is mainly involved in the intracellular post-translational modifications process. Recently, it has been proved that the histone demethylase members can regulate the replication of hepatitis B virus (HBV) and the expression of key molecules in the Janus-activated kinase-signal transducer and activator of the transcription (JAK/STAT) signaling pathway by chromatin modifying mechanisms. In our study, we identify novel roles of KDM7A in HBV replication and immune microenvironment through two subjects: pathogen and host. On the one hand, KDM7A is highly expressed in HBV-infected cells and promotes HBV replication and . Moreover, KDM7A interacts with HBV covalently closed circular DNA and augments the activity of the HBV core promoter. On the other hand, KDM7A can remodel the immune microenvironment. It inhibits the expression of interferon-stimulated genes (ISGs) through the IFN-γ/JAK2/STAT1 signaling pathway in both hepatocytes and macrophages. Further study shows that KDM7A interacts with JAK2 and STAT1 and affects their methylation. In general, we demonstrate the dual functions of KDM7A in HBV replication and immune microenvironment, and then we propose a new therapeutic target for HBV infection and immunotherapy. IMPORTANCE Histone lysine demethylase KDM7A can interact with covalently closed circular DNA and promote the replication of hepatitis B virus (HBV). The IFN-γ/JAK2/STAT1 signaling pathway in macrophages and hepatocytes is also downregulated by KDM7A. This study provides new insights into the mechanism of HBV infection and the remodeling of the immune microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581003PMC
http://dx.doi.org/10.1128/spectrum.01641-23DOI Listing

Publication Analysis

Top Keywords

immune microenvironment
20
hbv replication
16
kdm7a hbv
12
replication immune
12
signaling pathway
12
kdm7a
10
hbv
10
dual functions
8
functions kdm7a
8
lysine demethylase
8

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

Oncogene

January 2025

Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!