Deep inspiration breath-hold (DIBH) is an excellent technique to reduce the incidental radiation received by the heart during radiotherapy in patients with breast cancer. However, DIBH is costly and time-consuming for patients and radiotherapy staff. In Asian countries, the use of DIBH is restricted due to the limited number of patients with a high mean heart dose (MHD) and the shortage of radiotherapy personnel and equipment compared to that in the USA. This study aimed to develop, evaluate, and compare the performance of ten machine learning algorithms for predicting MHD using a patient's body mass index and single-slice CT parameters to identify patients who may not require DIBH. Machine learning models were built and tested using a dataset containing 207 patients with left-sided breast cancer who were treated with field-in-field radiotherapy with free breathing. The average MHD was 251 cGy. Stratified repeated four-fold cross-validation was used to build models using 165 training data. The models were compared internally using their average performance metrics: F2 score, AUC, recall, accuracy, Cohen's kappa, and Matthews correlation coefficient. The final performance evaluation for each model was further externally analyzed using 42 unseen test data. The performance of each model was evaluated as a binary classifier by setting the cut-off value of MHD ≥ 300 cGy. The deep neural network (DNN) achieved the highest F2 score (78.9%). Most models successfully classified all patients with high MHD as true positive. This study indicates that the ten models, especially the DNN, might have the potential to identify patients who may not require DIBH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10453557PMC
http://dx.doi.org/10.3390/curroncol30080537DOI Listing

Publication Analysis

Top Keywords

machine learning
12
breast cancer
12
heart dose
8
body mass
8
left-sided breast
8
patients
8
patients high
8
identify patients
8
patients require
8
require dibh
8

Similar Publications

The Biomedical Applications of Artificial Intelligence: An Overview of Decades of Research.

J Drug Target

January 2025

Sunirmal Bhattacharjee, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India.

A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact.

View Article and Find Full Text PDF

Background: Predicting treated language improvement (TLI) and transfer to the untreated language (cross-language generalization, CLG) after speech-language therapy in bilingual individuals with poststroke aphasia is crucial for personalized treatment planning. This study evaluated machine learning models to predict TLI and CLG and identified the key predictive features (eg, patient severity, demographics, and treatment variables) aligning with clinical evidence.

Methods: Forty-eight Spanish-English bilingual individuals with poststroke aphasia received 20 sessions of semantic feature-based naming treatment in either their first or second language.

View Article and Find Full Text PDF

Artificial Intelligence and Machine Learning in Preeclampsia.

Arterioscler Thromb Vasc Biol

January 2025

Department of Applied Mathematics, Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, ON, Canada.

Preeclampsia is a multisystem hypertensive disorder that manifests itself after 20 weeks of pregnancy, along with proteinuria. The pathophysiology of preeclampsia is incompletely understood. Artificial intelligence, especially machine learning with its capability to identify patterns in complex data, has the potential to revolutionize preeclampsia research.

View Article and Find Full Text PDF

Objective: Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.

View Article and Find Full Text PDF

Machine Learning for Reaction Performance Prediction in Allylic Substitution Enhanced by Automatic Extraction of a Substrate-Aware Descriptor.

J Chem Inf Model

January 2025

Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!