There is no doubt that the involvement of the Internet of Things (IoT) in our daily lives has changed the way we live and interact as a global community, as IoT enables intercommunication of digital objects around us, creating a pervasive environment. As of now, this IoT is found in almost every domain that is vital for human survival, such as agriculture, medical care, transportation, the military, and so on. Day by day, various IoT solutions are introduced to the market by manufacturers towards making our life easier and more comfortable. On the other hand, even though IoT now holds a key place in our lives, the IoT ecosystem has various limitations in efficiency, scalability, and adaptability. As such, biomimicry, which involves imitating the systems found in nature within human-made systems, appeared to be a potential remedy to overcome such challenges pertaining to IoT, which can also be referred to as bio-inspired IoT. In the simplest terms, bio-inspired IoT combines nature-inspired principles and IoT to create more efficient and adaptive IoT solutions, that can overcome most of the inherent challenges pertaining to traditional IoT. It is based on the idea that nature has already solved many challenging problems and that, by studying and mimicking biological systems, we might develop better IoT systems. As of now, this concept of bio-inspired IoT is applied to various fields such as medical care, transportation, cyber-security, agriculture, and so on. However, it is noted that only a few studies have been carried out on this new concept, explaining how these bio-inspired concepts are integrated with IoT. Thus, to fill in the gap, in this study, we provide a brief review of bio-inspired IoT, highlighting how it came into play, its ecosystem, its latest status, benefits, challenges, and future directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452281 | PMC |
http://dx.doi.org/10.3390/biomimetics8040373 | DOI Listing |
PLoS One
January 2025
College of Engineering, South China Agricultural University, Guangzhou, China.
In order to address many issues, such as the inconsistent and unreliable seeding process in traditional mechanical garlic seed metering systems (SMS), as well as the lack of ability to monitor the effectiveness of the seeding, a highly accurate electric-driven metering system (EDMS) was developed and created specifically for garlic seed planters. This study provided a description of the overall structure and functioning principle, as well as an analysis of the mechanism for smooth transit and delivery. A combination of an infrared (IR) sensor, Arduino Mega board, stepper motor, speed sensor, and a Wi-Fi module was employed to operate the EDMS, as well as monitor and count the quantity of garlic seeds during the planting process and determine the qualified rate (QR) and missing rate (MR).
View Article and Find Full Text PDFIn the current cybersecurity landscape, Distributed Denial of Service (DDoS) attacks have become a prevalent form of cybercrime. These attacks are relatively easy to execute but can cause significant disruption and damage to targeted systems and networks. Generally, attackers perform it to make reprisal but sometimes this issue can be authentic also.
View Article and Find Full Text PDFInt J Med Mushrooms
January 2025
Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan (R.O.C.).
Cordycepin, known for its tumor-suppressive and antiviral properties, has garnered attention due to its therapeutic and biological potential. Current Cordyceps militaris - based cordycepin production methods involve time-consuming and cost-intensive solid-state fermentation. Using an internet of things (IoT) architecture, we developed an active air-feed regulation fermentation system (AAFRFS) to detect CO2 emitted during C.
View Article and Find Full Text PDFBig Data
January 2025
School of Nursing, Shao Yang University, Shaoyang, China.
The demand for intensive care units (ICUs) is steadily increasing, yet there is a relative shortage of medical staff to meet this need. Intensive care work is inherently heavy and stressful, highlighting the importance of optimizing these units' working conditions and processes. Such optimization is crucial for enhancing work efficiency and elevating the level of diagnosis and treatment provided in ICUs.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Perovskite technologies has taken giant steps on its advances in only a decade time, from fundamental science to device engineering. The possibility to exploit this technology on a thin flexible substrate gives an unbeatable power to weight ratio compares to similar photovoltaic systems, opening new possibilities and new integration concepts, going from building integrated and applied photovoltaics (BIPV, BAPV) to internet of things (IoT). In this perspective, the recent progress of perovskite solar technologies on flexible substrates are summarized, focusing on the challenges that researchers face upon using flexible substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!