Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System.

Biosensors (Basel)

Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico.

Published: August 2023

Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using -nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452911PMC
http://dx.doi.org/10.3390/bios13080826DOI Listing

Publication Analysis

Top Keywords

enzymatic biosensor
12
arduino-based microfluidic
8
detection molecules
8
liquid samples
8
lipolytic enzyme
8
biosensor
7
development evaluation
4
evaluation low-cost
4
triglyceride
4
low-cost triglyceride
4

Similar Publications

A handheld biofluorometric system for acetone detection in exhaled breath condensates.

Analyst

January 2025

Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.

As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.

View Article and Find Full Text PDF

A Chemical Redox Cycling-Based Dual-Mode Biosensor for Self-Powered Photoelectrochemical and Colorimetric Assay of Heat Shock Protein.

ACS Sens

January 2025

College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.

To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.

View Article and Find Full Text PDF

This research developed a magnetic relaxation switching (MRS) biosensor based on hydrogel sol-gel transition and the CRISPR/Cas12a system (MRS-CRISPR) to detect Salmonella. Herein, the alkaline phosphatase (ALP) labeled with streptavidin was captured by the biotin-modified DNA on magnetic nanoparticles (MNPs) surface, which generated an acidic environment via enzymatic reaction to release Ca and induced the transformation of alginate sol to hydrogels. In contrast, Salmonella activated the trans-cleavage activity of the CRISPR/Cas12a system, interrupting the capture of ALP and the subsequent sol-gel transition.

View Article and Find Full Text PDF

Ranking Single Fluorescent Protein-Based Calcium Biosensor Performance by Molecular Dynamics Simulations.

J Chem Inf Model

December 2024

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Genetically encoded fluorescent biosensors (GEFBs) have become indispensable tools for visualizing biological processes A typical GEFB is composed of a sensory domain (SD) that undergoes a conformational change upon ligand binding or enzymatic reaction; the SD is genetically fused with a fluorescent protein (FP). The changes in the SD allosterically modulate the chromophore environment whose spectral properties are changed. Single fluorescent (FP)-based biosensors, a subclass of GEFBs, offer a simple experimental setup; they are easy to produce in living cells, structurally stable, and simple to use due to their single-wavelength operation.

View Article and Find Full Text PDF

Hybrid Enzyme-Electrocatalyst Cascade Modified Gas-Diffusion Electrodes for Methanol Formation from Carbon Dioxide.

Angew Chem Int Ed Engl

December 2024

Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.

We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!