The herbicide active ingredient glyphosate is the most widely applied herbicidal substance worldwide. Currently it is the market-leading pesticide, and its use is projected to further grow 4.5-fold between 2022 and 2029. Today, glyphosate use exceeds one megaton per year worldwide, which represents a serious environmental burden. A factor in the overall boost in the global use of glyphosate has been the spread of glyphosate-tolerant genetically modified (GM) crops that allow post-emergence applications of the herbicide on these transgenic crops. In turn, cultivation of glyphosate-tolerant GM crops represented 56% of the glyphosate use in 2019. Due to its extremely high application rate, xenobiotic behaviour and a water solubility (11.6 mg/mL at 25 °C) unusually high among pesticide active ingredients, glyphosate has become a ubiquitous water pollutant and a primary drinking water contaminant worldwide, presenting a threat to water quality. The goal of our research was to develop a rapid and sensitive method for detecting this herbicide active ingredient. For this purpose, we applied the novel analytical biosensor technique optical waveguide light-mode spectroscopy (OWLS) to the label-free detection of glyphosate in a competitive immunoassay format using glyphosate-specific polyclonal antibodies. After immobilising the antigen conjugate in the form of a glyphosate conjugated to human serum albumin for indirect measurement, the sensor chip was used in a flow-injection analyser system. For the measurements, an antibody stock solution was diluted to 2.5 µg/mL. During the measurement, standard solutions were mixed with the appropriate concentration of antibodies and incubated for 1 min before injection. The linear detection range and the EC value of the competitive detection method were between 0.01 and 100 ng/mL and 0.60 ng/mL, respectively. After investigating the indirect method, we tested the cross-reactivity of the antibody with glyphosate and structurally related compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452378PMC
http://dx.doi.org/10.3390/bios13080771DOI Listing

Publication Analysis

Top Keywords

herbicide active
12
active ingredient
12
glyphosate
9
optical waveguide
8
waveguide light-mode
8
light-mode spectroscopy
8
spectroscopy owls
8
ingredient glyphosate
8
application highly
4
highly sensitive
4

Similar Publications

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Pyroxsulam Resistance in : An Emerging Challenge in Crop Protection.

Plants (Basel)

December 2024

Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.

, a prevalent weed in Czech winter wheat fields, has developed resistance to ALS-inhibiting herbicides due to their frequent use. This study reports a biotype of resistant to pyroxsulam, with cross and multiple resistance to iodosulfuron, propoxycarbazone, pinoxaden, and chlortoluron. Dose-response experiments revealed high resistance of both R1 and R2 biotypes to pyroxsulam, with resistance factors (RF) of 6.

View Article and Find Full Text PDF

L. (Aizoaceae), commonly known as desert horse purslane or black pigweed, is a C4 dicot succulent invasive annual plant that is widespread in agricultural fields in Southeast Asia, tropical America, Africa, and Australia. In Israel, is an invasive weed of increasing importance in agricultural fields, including mainly corn, tomato, alfalfa watermelon, and groundnut crops.

View Article and Find Full Text PDF

Plant Growth-Promoting and Herbicidal Bacteria as Potential Bio-Based Solutions for Agriculture in Desertic Regions.

Plants (Basel)

December 2024

Laboratory of Plant Pathology and Bioproducts, Faculty of Agronomic Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile.

The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3.

View Article and Find Full Text PDF

Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!