Nucleic acid detection is widely used to identify infectious diseases and ensure food safety. However, conventional PCR-based techniques are time consuming. Thus, this study aims to combine recombinase polymerase amplification (RPA), which enables the rapid amplification of even trace amounts of nucleic acid fragments within 10-40 min at 37-42 °C, and solution-processed oxide thin-film transistor (TFT) technology, which exhibits high detection sensitivity, to detect . A single-stranded anti-probe was incorporated into the RPA primer to facilitate effective hybridization between the RPA product and the immobilized probe on the solution-processed oxide TFT. The RPA-amplified product carrying an anti-probe enabled specific binding to the chip surface. Changes in current were monitored before and after sample incubation to identify the target nucleic acids in the samples accurately. The proposed method achieved a remarkable limit of detection of 10 copies/μL of the fragment within 30 min. The design of the probes on the solution-processed oxide TFT surface and the anti-probe simplified the detection of other target nucleic acids, eliminating the need to denature DNA double-strands for specific binding during nucleic acid detection. Thus, the novel method offers the advantage of requiring minimal reagent resources and eliminates the need for complex procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452724PMC
http://dx.doi.org/10.3390/bios13080765DOI Listing

Publication Analysis

Top Keywords

solution-processed oxide
16
nucleic acid
12
recombinase polymerase
8
polymerase amplification
8
oxide thin-film
8
thin-film transistor
8
acid detection
8
oxide tft
8
specific binding
8
target nucleic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!