Introduction: The median survival of patients diagnosed with glioblastoma is very poor, despite efforts to improve the therapeutic effects of surgery, followed by treatment with temozolomide (TMZ) and ionizing radiation (IR). The utilization of TMZ or IR survivor cell models has enhanced the understanding of glioblastoma biology and the development of novel therapeutic strategies. In this present study, naïve U373 and clinically relevant U373 IRsurvivor (Surv) cells were used, as the IR-Surv cell model mimics the chronic long-term exposure to standardized radiotherapy for patients with glioblastoma in the clinic. As the role of ferroptosis in the IR survivor cell model has not previously been reported, we aimed to clarify its involvement in the clinically relevant IR-Surv glioblastoma model.
Methods: Transcriptomic alterations of ferroptosis-related genes were studied on naïve U373 and IR-Surv cell populations. To determine the effects of glutathione peroxidase inhibitors, ferroptosis-inducing agent 56 (FIN56) and Ras synthetic lethal 3 (RSL3), on the cells, several properties were assessed, including colony formation, cell viability and lipid peroxidation.
Results: Results from the transcriptomic analysis identified ferroptosis as a critical mechanism after radiation exposure in glioblastoma. Our findings also identified the role of ferroptosis inducers (FINs) in IR-survivor cells and suggested using FINs to treat glioblastoma.
Conclusion: FINs serve an important role in radioresistant cells; thus, the results of the present study may contribute to improving survival in patients with glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520623666230825110346 | DOI Listing |
Front Pharmacol
January 2025
School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Introduction: Oxyresveratrol (ORes) exhibits significant anticancer activity, particularly against breast cancer. However, its exact mechanism of action (MOA) remains unclear. This study aimed to investigate the pharmacological activity and underlying MOA.
View Article and Find Full Text PDFJ Hepatocell Carcinoma
January 2025
Departments of Pharmacology, School of Pharmacy, Qingdao University Medical College, Shandong, People's Republic of China.
Objective: Artesunate can inhibit the proliferation of various tumor cells and has practical value in developing anti-tumor drugs. However, its biological activity against hepatocellular carcinoma is weak. The efficacy of its anti-tumor effect needs to be improved.
View Article and Find Full Text PDFNano Lett
January 2025
School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity.
View Article and Find Full Text PDFNat Commun
January 2025
College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China.
Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Department of Neurology, Peking University First Hospital, Beijing, China. Electronic address:
DL-3-n-butylphthalide (NBP) exhibits promising pharmacological efficacy against ischemia-reperfusion injury, but its protective effects may involve many mechanisms that are yet to be fully understood. This study aimed to profile the metabolic alterations induced by NBP during the process of ischemia-reperfusion using spatial metabolomics. Our study found that NBP could significantly reduce the ischemic area and restore physical function by potentially modulating pathways of the citrate cycle, pyruvate metabolism, autophagy, and unsaturated fatty acid biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!