Green energy production is becoming increasingly important in mitigating the effects of climate change, and the photocatalytic approach could be a potential solution. However, the main barriers to its commercialization are ineffective catalysis due to recombination, poor optical absorption, and sluggish carrier migration. Here, we fabricated a two-dimensional (2D) reduced niobium oxide photocatalyst synthesized by an thermal method followed by copper incorporation. Compared to its counterparts, pure NbO (0.092 mmol g CO) and r-NbO (0.216 mmol g CO), the strongly bonded Cu/r-NbO (0.908 mmol g) sample produced an exceptional amount of CO. The separation of charge carriers and efficient use of light resulted in a remarkable photocatalytic performance. The acceptor levels were created by the Cu nanophase, and the carrier trapping states were created by the oxygen vacancies. This mechanism was supported by ESR and DRIFT analyses, which showed that enough free radicals were produced. This study opens up new possibilities for developing efficient photocatalysts that will generate green fuel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02082g | DOI Listing |
Chemistry
January 2025
China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA.
Pd cocatalysts show great potential for the photocatalytic production of H2O2. However, the catalytic efficiency of Pd cocatalyst is limited due to the strong adsorption of O2, which promotes O-O bond cleavage and thus reduces selectivity for the two-electron O2 reduction reaction. Considering that adjusting the electron density of Pd can predominately optimize Pd-Oads bond strength, in this work, electron-rich Pd sites are constructed by introducing Bi2Se3 middle layer between Pd cocatalysts and (010) facet of BiVO4 using an in-situ selenization strategy.
View Article and Find Full Text PDFChem Sci
December 2024
College of Materials Science and Engineering, Fuzhou University New Campus 350108 China
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea. Electronic address:
The increasing contamination of water bodies with pharmaceutical pollutants, particularly acetaminophen, necessitates innovative and efficient remediation strategies. This study introduces a novel AgVO@MoO (AV@MoO) nanorod heterostructure synthesized via a hydrothermal process designed to enrich the photocatalytic degradation of antibiotic pollutant using visible light irradiation. The bandgap energy of the optimum AV@MoO-3 heterostructure is 2.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!