Acute central nervous system injuries (ACNSI), encompassing traumatic brain injury (TBI), non-traumatic brain injury like stroke and encephalomeningitis, as well as spinal cord injuries, are linked to significant rates of disability and mortality globally. Nevertheless, effective and feasible treatment plans are still to be formulated. There are primary and secondary injuries occurred after ACNSI. Most ACNSIs exhibit comparable secondary injuries, which offer numerous potential therapeutic targets for enhancing clinical outcomes. Ferroptosis, a newly discovered form of cell death, is characterized as a lipid peroxidation process that is dependent on iron and oxidative conditions, which is also indispensable to mitochondria. Ferroptosis play a vital role in many neuropathological pathways, and ACNSIs may induce mitochondrial dysfunction, thereby indicating the essentiality of the mitochondrial connection to ferroptosis in ACNSIs. Nevertheless, there remains a lack of clarity regarding the involvement of mitochondria in the occurrence of ferroptosis as a secondary injuries of ACNSIs. In recent studies, anti-ferroptosis agents such as the ferroptosis inhibitor Ferrostain-1 and iron chelation therapy have shown potential in ameliorating the deleterious effects of ferroptosis in cases of traumatic ACNSI. The importance of this evidence is extremely significant in relation to the research and control of ACNSIs. Therefore, our review aims to provide researchers focusing on enhancing the therapeutic outcomes of ACNSIs with valuable insights by summarizing the physiopathological mechanisms of ACNSIs and exploring the correlation between ferroptosis, mitochondrial dysfunction, and ACNSIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445767 | PMC |
http://dx.doi.org/10.3389/fncel.2023.1228968 | DOI Listing |
Food Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFScand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Front Neurosci
December 2024
The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada.
This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bangalore, IND.
Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.
View Article and Find Full Text PDFCitrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!