Typically, animal locomotion studies involve consecutive strides, which are frequently assumed to be independent with parameters that do not vary across strides. This assumption is often not tested. However, failing in particular to account for dependence across strides may cause an incorrect estimate of the uncertainty of the measurements and thereby lead to either missing (overestimating variance) or over-evaluating (underestimating variance) biological signals. In turn, this impacts replicability of the results because variability is accounted for differently across experiments. In this paper, we analyse the changes of a couple of measures of human leg stiffness across strides during running experiments, using a publicly available dataset. A major finding of this analysis is that the time series of these measurements of stiffness show autocorrelation even at large lags and so there is dependence between individual strides, even when separated by many intervening strides. Our results question the practice in biomechanics research of using each stride as an independent observation or of sub-selecting strides at small lags. Following the outcome of our analysis, we strongly recommend caution in doing so without first confirming the independence of the measurements across strides and without confirming that sub-selection does not produce spurious results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445019PMC
http://dx.doi.org/10.1098/rsos.230597DOI Listing

Publication Analysis

Top Keywords

strides
9
human leg
8
leg stiffness
8
stiffness strides
8
strides running
8
variability dependence
4
dependence human
4
running consequences
4
consequences analysis
4
analysis locomotion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!