Background: Human aortic valve stenosis (AS) and insufficiency (AI) are common diseases in aging population. Identifying the molecular regulatory networks of AS and AI is expected to offer novel perspectives for AS and AI treatment.
Methods: Highly correlated modules with the progression of AS and AI were identified by weighted genes co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by the clusterProfiler program package. Differentially expressed genes (DEGs) were identified by the DESeqDataSetFromMatrix function of the DESeq2 program package. The protein-protein interaction (PPI) network analyses were implemented using the STRING online tool and visualized with Cytoscape software. The DEGs in AS and AI groups were overlapped with the top 30 genes with highest connectivity to screen out ten hub genes. The ten hub genes were verified by analyzing the data in high throughput RNA-sequencing dataset and real-time PCR assay using AS and AI aortic valve samples.
Results: By WGCNA algorithm, 302 highly correlated genes with the degree of AS, degree of AI, and heart failure were identified from highly correlated modules. GO analyses showed that highly correlated genes had close relationship with collagen fibril organization, extracellular matrix organization and extracellular structure organization. KEGG analyses also manifested that protein digestion and absorption, and glutathione metabolism were probably involved in AS and AI pathological courses. Moreover, DEGs were picked out for 302 highly correlated genes in AS and AI groups relative to the normal control group. The PPI network analyses indicated the connectivity among these highly correlated genes. Finally, ten hub genes (, , , , , , , , , and ) in AS and AI were found out and verified.
Conclusion: Our study may provide the underlying molecular targets for the mechanism research, diagnosis, and treatment of AS and AI in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445149 | PMC |
http://dx.doi.org/10.3389/fcvm.2023.857578 | DOI Listing |
Anal Chim Acta
March 2025
Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou, 215000, China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. Electronic address:
Rapid and sensitive protein detection methods are of benefit to clinical diagnosis, pathological mechanism research, and infection prevention. However, routine protein detection technologies, such as enzyme-linked immunosorbent assay and Western blot, suffer from low sensitivity, poor quantification and labourious operation. Herein, we developed a fully automated protein analysis system to conduct fast protein quantification at the single molecular level.
View Article and Find Full Text PDFForensic Sci Int Genet
January 2025
Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China; School of Forensic Medicine, Kunming Medical University, Kunming 650500, China. Electronic address:
DNA and RNA markers are significant in forensic practices, such as individual and body fluid identification. However, forensic DNA and RNA markers were separately analyzed in most forensic experiments, which resulted in large amounts of sample consumption, complex procedures, and weak inter-evidence correlation. While several integrated methods based on capillary electrophoresis and next-generation sequencing technologies were reported, integrated procedures were mostly on nucleic acid co-extraction, co-electrophoresis, or co-sequencing, and the number and type of markers co-tested were limited.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China. Electronic address:
Doxycycline (DOX) and zinc (Zn), are frequently detected in livestock manure. Untreated excrement carries a sizable load of DOX and Zn into the soil, exacerbating agricultural nonpoint source pollution. However, research on the effects of DOX and Zn on soil microbial diversity and the prevalence of resistance genes is limited.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFBMC Nurs
January 2025
College of Nursing, Pusan National University, Yangsan-si, Gyeongsangnam-do, Korea.
Background: Organizational well-being is a critical issue that should be addressed within nursing organizations as it boosts the morale and work motivation of its members by enhancing their satisfaction and happiness.
Aim: This study aimed to evaluate the levels of positive psychological capital, shared leadership, and organizational well-being among nurses, and examine the impact of positive psychological capital and shared leadership on organizational well-being.
Methods: A descriptive survey research design was used, involving 177 nurses with at least one year of work experience at highly specialized hospitals in Korea treating patients with severe conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!