While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a "functional" monomer (, a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (SAr) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si-O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445473PMC
http://dx.doi.org/10.1039/d3sc02868bDOI Listing

Publication Analysis

Top Keywords

bifunctional silyl
12
silyl ether
12
polyethylene glycol
8
thiol-triggered deconstruction
4
deconstruction bifunctional
4
ether terpolymers
4
terpolymers sar-triggered
4
sar-triggered cascade
4
cascade si-containing
4
si-containing polymers
4

Similar Publications

Copper radioisotopes can be used for imaging as well as for therapy and, thus, can form ideal theranostic pairs. The Cu(II) complexes of cross-bridged cyclam (cb-cyclam) derivatives are considered to be highly stable . However, the complexes are mostly formed under harsh conditions not compatible with sensitive biomolecules.

View Article and Find Full Text PDF

Enantioselective Organocatalyzed Cascade Dearomatizing Spirocycloaddition Reactions of Indole-Ynones.

Org Lett

October 2024

Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, 230036 Hefei, China.

An intramolecular organocatalytic cascade dearomatizing spirocycloaddition reaction of indole-ynone compounds containing -silyl-naphthol substituents has been developed with the use of a chiral bifunctional thiourea. This process was able to provide various structurally diverse polycyclic spiroindolines in high yields (up to 98%) with excellent stereoselectivities (>20:1 dr, up to 98% ee) involving the formation of carbonylvinylidene -quinone methide intermediates.

View Article and Find Full Text PDF

Herein, we describe a new bifunctional macrocyclic catalyst that employs multiple weak noncovalent interactions to enable substrate-selective O-silylation of ammonium alcohols over more reactive aliphatic alcohols with up to >20:1 substrate selectivity. Our catalytic strategy merges (i) the use of crown ethers as ammonium-binding receptors and (ii) the exploitation of -methyl imidazole as a catalytic motif. Our collective mechanistic studies reveal the importance of receptor size, conformational preorganization, and the number of hydrogen-bonding acceptor units needed to achieve high selectivity within the macrocyclic binding pocket.

View Article and Find Full Text PDF

The use of diaryl-substituted vinyl boronates, a class of chemical building blocks with well-known synthetic utility, is principally limited by the difficulty faced in their preparation. Herein, we present a convenient synthetic strategy based on a gold-catalyzed Hiyama arylation of (Z)-β-(borylvinyl)silanes, which are easily accessible by hydroboration of silylalkynes. By exploiting the highly electronegative nature of the gold(III) intermediate (which is accessed by light-assisted oxidation using aryl diazonium salts), a selective activation of the silyl group in the presence of the boron moiety is achieved.

View Article and Find Full Text PDF

Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation.

ACS Sustain Chem Eng

November 2023

Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland.

The extraction of various minerals is commonly conducted through froth flotation, which is a versatile separation method in mineral processing. In froth flotation, depressants are employed to improve the flotation selectivity by modifying the wettability of the minerals and reducing their natural or induced floatability. However, the environmental impact of many current flotation chemicals poses a challenge to the sustainability and selectivity of the ore beneficiation processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!