The integration of high activity, selectivity and stability in one electrocatalyst is highly desirable for electrochemical CO reduction (ECR), yet it is still a knotty issue. The unique electronic properties of high-nuclear clusters may bring about extraordinary catalytic performance; however, construction of a high-nuclear structure for ECR remains a challenging task. In this work, a family of calix[8]arene-protected bismuth-oxo clusters (BiOCs), including Bi (BiOC-1/2), BiAl (BiOC-3), Bi (BiOC-4), Bi (BiOC-5) and BiMo (BiOC-6), were prepared and used as robust and efficient ECR catalysts. The BiMo cluster in BiOC-6 is the largest metal-oxo cluster encapsulated by calix[8]arenes. As an electrocatalyst, BiOC-5 exhibited outstanding electrochemical stability and 97% Faraday efficiency for formate production at a low potential of -0.95 V RHE, together with a high turnover frequency of up to 405.7 h. Theoretical calculations reveal that large-scale electron delocalization of BiOCs is achieved, which promotes structural stability and effectively decreases the energy barrier of rate-determining *OCHO generation. This work provides a new perspective for the design of stable high-nuclear clusters for efficient electrocatalytic CO conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445447PMC
http://dx.doi.org/10.1039/d3sc02924gDOI Listing

Publication Analysis

Top Keywords

electron delocalization
8
bismuth-oxo clusters
8
high-nuclear clusters
8
delocalization robust
4
high-nuclear
4
robust high-nuclear
4
high-nuclear bismuth-oxo
4
clusters
4
clusters promoted
4
promoted electroreduction
4

Similar Publications

The aromaticity of a representative sample of pro-aromatic radicals and its nitro, amino, hydroxyl and imine substituted derivatives has been analysed by means of multicentre delocalization indices (MCI) and nuclear-independent chemical shifts (NICS). Because of their radical character, these compounds may exhibit conflicting α/ß aromaticity, so that the contribution of α and β electrons to the MCI and NICS has been analysed separately and their values qualitatively interpreted in terms of the 2n+1/2n rule. All the monocyclic radicals investigated show conflicting α/β aromaticity.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

A highly sensitive and fast-response fluorescence nanoprobe for in vivo imaging of hypochlorous acid.

J Hazard Mater

January 2025

State Key laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:

Fluorescent probes for in vivo hypochlorous acid (HClO) imaging often face challenges of low selectivity and high cytotoxicity, largely due to poor analyte recognition and water-insoluble aromatic skeletons. To address this, we synthesized fluorescein hydrazide by introducing a spiro-lactam unit into fluorescein, which offers high emission intensity and molar absorption. The five-membered heterocycle in fluorescein hydrazide is selectively disrupted by HClO, enhancing the conjugated system and electron delocalization of the fluorophore, resulting in highly sensitive fluorescence detection of HClO.

View Article and Find Full Text PDF

Impact of Subsurface Oxygen on CO Charging Energy Changes in Cu Surfaces.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.

View Article and Find Full Text PDF

Reconsideration of the P-clusters in VFe proteins using the bond-valence method: towards their electron transfer and protonation.

Acta Crystallogr D Struct Biol

February 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

P-clusters have been statistically analysed using the bond-valence sum (BVS) method together with weighting schemes. The crystallographic data come from the VFe proteins deposited in the Protein Data Bank (PDB) with high resolutions of better than 1.35 Å.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!