Although poly-vinyl alcohol (PVA) has certain mechanical drawbacks such as a weak barrier, it has widely been used in food packaging over the last many years. To increase the suitability of PVA (CHO) and render it ideal for food packaging, a diversity of studies have already been carried out. In the below-mentioned script, we, for the first time, report the use of natural product osthol in making a new composite with PVA for enhancing thermal, physicochemical, and antimicrobial properties. The significant aim of the report is the insertion of osthol (CHO) into PVA polymer, which is to be subsequently used for antimicrobial applications. The synthesis of the polymer composite film is done by solvent casting method and is characterized by SEM, XRD, FT-IR, and UV-Vis spectroscopy analysis. The manifestation of antimicrobial activity against () (ATCC8738P), (ATCC8739), , , and by the film composite is remarkable. The addition of osthol molecule increases the tensile strength of PVA films from 18.73 ± 0.56 Mpa (PVA) to 24.58 ± 0.49 Mpa (15 mL). As a result, tensile strength increases by 23.79% in a film containing a higher concentration of osthol (15 mL). The barrier properties of PVA osthol composite films improve with the incorporation of osthol. OTR and WVTR decrease by 43.03% and 30.24%, respectively, on the addition of 15 mL osthol. Reduction in OTR and WVTR of the films could increase their applicability in the food sector. An increase in contact angle from 43° (pure PVA) to 66.7° increases the hydrophobic character of the composite films which is desirable for food packaging. This noticeable enhancement of the properties of the PVA film like hydrophobicity, mechanical, barrier, and antimicrobial is supporting the potential application of achieved material in packaging of easily perishable foods like fruits and vegetables by extending their shelf life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446923PMC
http://dx.doi.org/10.55730/1300-0527.3496DOI Listing

Publication Analysis

Top Keywords

composite films
12
food packaging
12
pva
9
addition osthol
8
tensile strength
8
properties pva
8
otr wvtr
8
osthol
7
composite
6
antimicrobial
5

Similar Publications

In-situ Polymerization Induced Seed-Root Anchoring Structure for Enhancing Stability and Efficiency in Perovskite Solar Modules.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.

The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.

View Article and Find Full Text PDF

Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.

View Article and Find Full Text PDF

Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:

Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).

View Article and Find Full Text PDF

Enhancing strategies of MOFs-derived materials for microwave absorption: review and perspective.

Adv Colloid Interface Sci

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Microwave absorption materials (MAMs) gradually exhibit crucial applications in reducing electromagnetic wave (EMW) pollution, avoiding EMW information leakage, and solving radar stealth. Metal-organic frameworks (MOFs)-derived materials are flourishing in the domain of EMW absorption attributed to their especial structures, heteroatom doping and controllable components. Herein, various strategies to enhance the EMW absorption ability of MOFs-derived materials are outlined, covering structural design and compositional regulation.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!